Configuration Tracking for Soft Continuum Robotic Arms Using Inverse Dynamic Control of a Cosserat Rod Model

Author(s):  
Azadeh Doroudchi ◽  
Spring Berman
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ibrahim M. Mehedi ◽  
Mohd Heidir Mohd Shah ◽  
Rahtul Jannat

Dynamic inverse- (DI-) based control technique has been utilized in many applications and proven to be effective. Recently, the inverse dynamic control (IDC), an expansion to the classical DI technique, has been trending with implementation in many areas. It has been proved that IDC is capable of overcoming some limitations in DI-based techniques, particularly in cancellation of useful nonlinearities. This paper extends the implementation of IDC on the positional and speed control of the linear servo cart system. Simulation results further proves that IDC is an effective and robust controller evidently when comparing it with the proportional velocity and lead compensator controller.


Author(s):  
D-H Kim ◽  
J-W Lee

This article presents the anti-sway and anti-skew control of a container crane that is widely used in cargo terminals. A four-cable suspended spreader is used to load and unload the container. In such a loading/unloading process, the spreader has usually residual oscillation, the sway and skew, due to the motion of the trolley and the gantry or an external disturbance such as wind. Thus, it is difficult to locate the container at the desired position quickly and precisely. In order to suppress the residual oscillation, this article proposes the use of four auxiliary cables added to four main cables. Using null space, the tension of the redundant auxiliary cables, i.e. the optimal tension distribution among four auxiliary cables, is achieved. The inverse dynamic control and a model-based proportional and integral and derivative (PID) control is applied to derive the control law. The effectiveness of the proposed tension assignment for the auxiliary cables and the model-based PID control algorithm are verified by computer simulations.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yang Wang ◽  
Mingshu Chen ◽  
Yu Song

This paper proposes a novel robust fixed-time control for the robot manipulator system with uncertainties. Based on the uniform robust exact differentiator (URED) algorithm, a robust control term is constructed. Then, a robust fixed-time inverse dynamics control (IDC) is proposed. For the proposed control method, the fixed-time stability of a closed-loop system with uncertainties is strictly proved. The newly proposed method exhibits the following two attractive features. First, the proposed control scheme extends the existing fixed-time IDC for the robot manipulator system to the robust control scheme. Second, the proposed method is strictly nonsingular rather than the commonly used approximate approach. Simulation result demonstrates the effectiveness of the proposed control scheme.


Author(s):  
Julio Javier Avalos García ◽  
Eduardo Izaguirre Castellanos ◽  
Luis Hernández Santana

Sign in / Sign up

Export Citation Format

Share Document