scholarly journals Minimum-time trajectory planning for industrial robots with general torque constraints

Author(s):  
Kang Shin ◽  
N. Mckay
2011 ◽  
Vol 3 (3) ◽  
Author(s):  
A. Gasparetto ◽  
A. Lanzutti ◽  
R. Vidoni ◽  
V. Zanotto

In this paper, an experimental analysis and validation of a minimum time-jerk trajectory planning algorithm is presented. The technique considers both the execution time and the integral of the squared jerk along the whole trajectory, so as to take into account the need for fast execution and the need for a smooth trajectory, by adjusting the values of two weights. The experimental tests have been carried out by using an accelerometer mounted on a Cartesian robot. The algorithm does not require a dynamic model of the robot, but just its mechanical constraints, and can be implemented in any industrial robot. The outcomes of the tests have been compared with both simulation and experimental results yielded by two trajectory planning algorithms taken from the literature.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Alejandro GutierreznGiles ◽  
Luis U. EvangelistanHernandez ◽  
Marco A. Arteaga ◽  
Carlos A. CruznVillar ◽  
Alejandro RodrigueznAngeles

2011 ◽  
Vol 64 (2) ◽  
pp. 197-219 ◽  
Author(s):  
Vanni Zanotto ◽  
Alessandro Gasparetto ◽  
Albano Lanzutti ◽  
Paolo Boscariol ◽  
Renato Vidoni

Author(s):  
Y. P. Chien ◽  
Qing Xue

An efficient locally minimum-time trajectory planning algorithm for coordinately operating multiple robots is introduced. The task of the robots is to carry a common rigid object from an initial position to a final position along a given path in three-dimensional workspace in minimum time. The number of robots in the system is arbitrary. In the proposed algorithm, the desired motion of the common object carried by the robots is used as the key to planning of the trajectories of all the non-redundant robots involved. The search method is used in the trajectory planning. The planned robot trajectories satisfy the joint velocity, acceleration and torque constraints as well as the path constraints. The other constraints such as collision-free constraints, can be easily incorporated into the trajectory planning in future research.


Author(s):  
Aniruddha V. Shembekar ◽  
Yeo Jung Yoon ◽  
Alec Kanyuck ◽  
Satyandra K. Gupta

Additive manufacturing (AM) technologies have been widely used to fabricate 3D objects quickly and cost-effectively. However, building parts consisting of complex geometries with multiple curvatures can be a challenging process for the traditional AM system whose capability is restricted to planar-layered printing. Using 6-DOF industrial robots for AM overcomes this limitation by allowing materials to deposit on non-planar surfaces with desired tool orientation. In this paper, we present collision-free trajectory planning for printing using non-planar deposition. Trajectory parameters subject to surface curvature are properly controlled to avoid any collision with printing surface. We have implemented our approach by using a 6-DOF robot arm. The complex 3D structures with various curvatures were successfully fabricated, while avoiding any failures in joint movement, holding comparable build time and completing with a satisfactory surface finish.


2004 ◽  
Vol 23 (4) ◽  
pp. 703-715 ◽  
Author(s):  
T. Chettibi ◽  
H.E. Lehtihet ◽  
M. Haddad ◽  
S. Hanchi

Sign in / Sign up

Export Citation Format

Share Document