Trajectory planning for coordinately operating robots

Author(s):  
Y. P. Chien ◽  
Qing Xue

An efficient locally minimum-time trajectory planning algorithm for coordinately operating multiple robots is introduced. The task of the robots is to carry a common rigid object from an initial position to a final position along a given path in three-dimensional workspace in minimum time. The number of robots in the system is arbitrary. In the proposed algorithm, the desired motion of the common object carried by the robots is used as the key to planning of the trajectories of all the non-redundant robots involved. The search method is used in the trajectory planning. The planned robot trajectories satisfy the joint velocity, acceleration and torque constraints as well as the path constraints. The other constraints such as collision-free constraints, can be easily incorporated into the trajectory planning in future research.

2017 ◽  
Vol 10 (32) ◽  
pp. 1571-1579
Author(s):  
Leonardo Ramirez Alberto ◽  
Carlos Eduardo Cabrera Ardila ◽  
Diego Mauricio Rivera Pinzon

Author(s):  
Alessandro Gasparetto ◽  
Albano Lanzutti ◽  
Renato Vidoni ◽  
Vanni Zanotto

In this paper an analysis of the experimental results yielded by a minimum time-jerk trajectory planning algorithm is presented. The technique considers both the execution time and the integral of the squared jerk along the trajectory, and the kinematic constraints of the robot manipulator under test. The need for a fast execution and the need for a smooth trajectory are taken into account by adjusting the values of two weights, whose suitable values are set with an “automatic” choice algorithm. The outcomes of the tests are compared with both simulations and experimental results obtained by using a “classic” spline trajectory planning algorithm. The experimental tests are carried out by using an accelerometer mounted on a Cartesian robot.


2011 ◽  
Vol 3 (3) ◽  
Author(s):  
A. Gasparetto ◽  
A. Lanzutti ◽  
R. Vidoni ◽  
V. Zanotto

In this paper, an experimental analysis and validation of a minimum time-jerk trajectory planning algorithm is presented. The technique considers both the execution time and the integral of the squared jerk along the whole trajectory, so as to take into account the need for fast execution and the need for a smooth trajectory, by adjusting the values of two weights. The experimental tests have been carried out by using an accelerometer mounted on a Cartesian robot. The algorithm does not require a dynamic model of the robot, but just its mechanical constraints, and can be implemented in any industrial robot. The outcomes of the tests have been compared with both simulation and experimental results yielded by two trajectory planning algorithms taken from the literature.


2010 ◽  
Vol 26 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Nale Lehmann-Willenbrock ◽  
Simone Kauffeld

In research on trust in the organizational context, there is some agreement evolving that trust should be measured with respect to various foci. The Workplace Trust Survey (WTS) by Ferres (2002) provides reliable assessment of coworker, supervisor, and organizational trust. By means of a functionally equivalent translation, we developed a German version of the questionnaire (G-WTS) comprising 21 items. A total of 427 employees were surveyed with the G-WTS and questionnaires concerning several work-related attitudes and behaviors and 92 of these completed the survey twice. The hypothesized three-dimensional conceptualization of organizational trust was confirmed by confirmatory factor analysis. The G-WTS showed good internal consistency and retest reliability values. Concerning convergent validity, all of the three G-WTS dimensions positively predicted job satisfaction. In terms of discriminant validity, Coworker Trust enhanced group cohesion; Supervisor Trust fostered innovative behavior, while Organizational Trust was associated with affective commitment. Theoretical and practical contributions as well as opportunities for future research with the G-WTS are discussed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7016
Author(s):  
Pawel S. Dabrowski ◽  
Cezary Specht ◽  
Mariusz Specht ◽  
Artur Makar

The theory of cartographic projections is a tool which can present the convex surface of the Earth on the plane. Of the many types of maps, thematic maps perform an important function due to the wide possibilities of adapting their content to current needs. The limitation of classic maps is their two-dimensional nature. In the era of rapidly growing methods of mass acquisition of spatial data, the use of flat images is often not enough to reveal the level of complexity of certain objects. In this case, it is necessary to use visualization in three-dimensional space. The motivation to conduct the study was the use of cartographic projections methods, spatial transformations, and the possibilities offered by thematic maps to create thematic three-dimensional map imaging (T3DMI). The authors presented a practical verification of the adopted methodology to create a T3DMI visualization of the marina of the National Sailing Centre of the Gdańsk University of Physical Education and Sport (Poland). The profiled characteristics of the object were used to emphasize the key elements of its function. The results confirmed the increase in the interpretative capabilities of the T3DMI method, relative to classic two-dimensional maps. Additionally, the study suggested future research directions of the presented solution.


2021 ◽  
Vol 13 (2) ◽  
pp. 563
Author(s):  
Bing Ran ◽  
Scott Weller

Despite the growing utility and prevalence of social entrepreneurship, an accepted definition remains elusive and infeasible. Yet, it is imperative that the principles guiding social entrepreneurship are identified so that common ground is established to facilitate future research. On the basis of a systematic literature review, this conceptual paper proposes a theoretical framework outlining social entrepreneurship as a three-dimensional framework as a function of continua of “social” and “business” logics, “beneficial” and “detrimental” social change logics, and “innovation” and “mundane” logics. The framework accommodates the fuzziness and ambiguity associated with social entrepreneurship whilst remaining a workable, identifiable construct. By accounting for the shifting logics practiced by social entrepreneurship that both influence and are influenced by the organizational environment, this framework provides an exit strategy for the definitional elusiveness of social entrepreneurship. The resultant structures and functions of social entrepreneurship are shaped by these constraints as reflected by the fluidity and flexibility endorsed by the framework. Four avenues for future research regarding social entrepreneurship are recommended on the basis of the framework proposed in this article.


2021 ◽  
Vol 11 (13) ◽  
pp. 5956
Author(s):  
Elena Parra ◽  
Irene Alice Chicchi Giglioli ◽  
Jestine Philip ◽  
Lucia Amalia Carrasco-Ribelles ◽  
Javier Marín-Morales ◽  
...  

In this article, we introduce three-dimensional Serious Games (3DSGs) under an evidence-centered design (ECD) framework and use an organizational neuroscience-based eye-tracking measure to capture implicit behavioral signals associated with leadership skills. While ECD is a well-established framework used in the design and development of assessments, it has rarely been utilized in organizational research. The study proposes a novel 3DSG combined with organizational neuroscience methods as a promising tool to assess and recognize leadership-related behavioral patterns that manifest during complex and realistic social situations. We offer a research protocol for assessing task- and relationship-oriented leadership skills that uses ECD, eye-tracking measures, and machine learning. Seamlessly embedding biological measures into 3DSGs enables objective assessment methods that are based on machine learning techniques to achieve high ecological validity. We conclude by describing a future research agenda for the combined use of 3DSGs and organizational neuroscience methods for leadership and human resources.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 13
Author(s):  
Yuhang Yang ◽  
Zhiqiao Dong ◽  
Yuquan Meng ◽  
Chenhui Shao

High-fidelity characterization and effective monitoring of spatial and spatiotemporal processes are crucial for high-performance quality control of many manufacturing processes and systems in the era of smart manufacturing. Although the recent development in measurement technologies has made it possible to acquire high-resolution three-dimensional (3D) surface measurement data, it is generally expensive and time-consuming to use such technologies in real-world production settings. Data-driven approaches that stem from statistics and machine learning can potentially enable intelligent, cost-effective surface measurement and thus allow manufacturers to use high-resolution surface data for better decision-making without introducing substantial production cost induced by data acquisition. Among these methods, spatial and spatiotemporal interpolation techniques can draw inferences about unmeasured locations on a surface using the measurement of other locations, thus decreasing the measurement cost and time. However, interpolation methods are very sensitive to the availability of measurement data, and their performances largely depend on the measurement scheme or the sampling design, i.e., how to allocate measurement efforts. As such, sampling design is considered to be another important field that enables intelligent surface measurement. This paper reviews and summarizes the state-of-the-art research in interpolation and sampling design for surface measurement in varied manufacturing applications. Research gaps and future research directions are also identified and can serve as a fundamental guideline to industrial practitioners and researchers for future studies in these areas.


Sign in / Sign up

Export Citation Format

Share Document