scholarly journals Global Trajectory Generation for Nonholonomic Robots in Dynamic Environments

Author(s):  
Yi Guo ◽  
Yi Long ◽  
Weihua Sheng
Robotica ◽  
2008 ◽  
Vol 26 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Jing Ren ◽  
Kenneth A. McIsaac ◽  
Rajni V. Patel

SUMMARYThis paper is to investigate inherent oscillations problems of Potential Field Methods (PFMs) for nonholonomic robots in dynamic environments. In prior work, we proposed a modification of Newton's method to eliminate oscillations for omnidirectional robots in static environment. In this paper, we develop control laws for nonholonomic robots in dynamic environment using modifications of Newton's method. We have validated this technique in a multirobot search-and-forage task. We found that the use of the modifications of Newton's method, which applies anywhere C2 continuous navigation functions are defined, can greatly reduce oscillations and speed up robot's movement, when compared to the standard gradient approaches.


2021 ◽  
Vol 11 (7) ◽  
pp. 3238
Author(s):  
Yonghee Park ◽  
Woosung Kim ◽  
Hyungpil Moon

In this paper, we present an efficient global and local replanning method for a quadrotor to complete a flight mission in a cluttered and unmapped environment. A minimum-snap global path planner generates a global trajectory that comprises some waypoints in a cluttered environment. When facing unexpected obstacles, our method modifies the global trajectory using geometrical planning and closed-form formulation for an analytical solution with 9th-order polynomial. The proposed method provides an analytical solution, not a numerical one, and it is computationally efficient without falling into a local minima problem. In a simulation, we show that the proposed method can fly a quadrotor faster than the numerical method in a cluttered environment. Furthermore, we show in experiments that the proposed method can provide safer and faster trajectory generation than the numerical method in a real environment.


Robotica ◽  
2008 ◽  
Vol 26 (1) ◽  
pp. 117-127 ◽  
Author(s):  
Jing Ren ◽  
Kenneth A. McIsaac ◽  
Rajni V. Patel

SUMMARYThis paper is to investigate inherent oscillations problems of potential field methods (PFMs) for nonholonomic robots in dynamic environments. In prior work, we proposed a modification of Newton's method to eliminate oscillations for omnidirectional robots in static environment. In this paper, we develop control laws for nonholonomic robots in dynamic environment using modifications of Newton's method. We have validated this technique in a multi-robot search-and-forage task. We found that the use of the modifications of Newton's method, which applies anywhere C2 continuous navigation functions are defined, can greatly reduce oscillations and speed up the robot's movement, when compared to the standard gradient approaches.


2009 ◽  
Author(s):  
Sallie J. Weaver ◽  
Rebecca Lyons ◽  
Eduardo Salas ◽  
David A. Hofmann

2008 ◽  
Author(s):  
Bradley C. Love ◽  
Matt Jones ◽  
Marc Tomlinson ◽  
Michael Howe

Sign in / Sign up

Export Citation Format

Share Document