Classification of human activity based on smartphone inertial sensor using support vector machine

Author(s):  
Ku Nurhanim ◽  
I. Elamvazuthi ◽  
L. I. Izhar ◽  
T. Ganesan
2012 ◽  
Vol 468-471 ◽  
pp. 2916-2919
Author(s):  
Fan Yang ◽  
Yu Chuan Wu

This paper describes how to use a posture sensor to validate human daily activity and by machine learning algorithm - Support Vector Machine (SVM) an outstanding model is built. The optimal parameter σ and c of RBF kernel SVM were obtained by searching automatically. Those kinematic data was carried out through three major steps: wavelet transformation, Principle Component Analysis (PCA) -based dimensionality reduction and k-fold cross-validation, followed by implementing a best classifier to distinguish 6 difference actions. As an activity classifier, the SVM (Support Vector Machine) algorithm is used, and we have achieved over 94.5% of mean accuracy in detecting differential actions. It shows that the verification approach based on the recognition of human activity detection is valuable and will be further explored in the near future.


Information ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 416 ◽  
Author(s):  
Lei Chen ◽  
Shurui Fan ◽  
Vikram Kumar ◽  
Yating Jia

Human activity recognition (HAR) has been increasingly used in medical care, behavior analysis, and entertainment industry to improve the experience of users. Most of the existing works use fixed models to identify various activities. However, they do not adapt well to the dynamic nature of human activities. We investigated the activity recognition with postural transition awareness. The inertial sensor data was processed by filters and we used both time domain and frequency domain of the signals to extract the feature set. For the corresponding posture classification, three feature selection algorithms were considered to select 585 features to obtain the optimal feature subset for the posture classification. And We adopted three classifiers (support vector machine, decision tree, and random forest) for comparative analysis. After experiments, the support vector machine gave better classification results than other two methods. By using the support vector machine, we could achieve up to 98% accuracy in the Multi-class classification. Finally, the results were verified by probability estimation.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

2018 ◽  
Vol 62 (5) ◽  
pp. 558-562
Author(s):  
Uchaev D.V. ◽  
◽  
Uchaev Dm.V. ◽  
Malinnikov V.A. ◽  
◽  
...  

2013 ◽  
Vol 38 (2) ◽  
pp. 374-379 ◽  
Author(s):  
Zhi-Li PAN ◽  
Meng QI ◽  
Chun-Yang WEI ◽  
Feng LI ◽  
Shi-Xiang ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document