Detection of Short-Circuited Turns in Transformer Vibration Signals using MUSIC-Empirical Wavelet Transform and Fractal Dimension

Author(s):  
Jose R. Huerta-Rosales ◽  
Martin Valtierra-Rodriguez ◽  
Juan P. Amezquita-Sanchez ◽  
David Granados-Lieberman
2017 ◽  
Vol 24 (12) ◽  
pp. 2512-2531 ◽  
Author(s):  
Boualem Merainani ◽  
Chemseddine Rahmoune ◽  
Djamel Benazzouz ◽  
Belkacem Ould-Bouamama

There are growing demands for condition monitoring and fault diagnosis of rotating machinery to lower unscheduled breakdown. Gearboxes are one of the fundamental components of rotating machinery; their faults identification and classification always draw a lot of attention. However, non-stationary vibration signals and low energy of weak faults makes this task challenging in many cases. Thus, a new fault diagnosis method which combines the Hilbert empirical wavelet transform (HEWT), singular value decomposition (SVD), and self-organizing feature map (SOM) neural network is proposed in this paper. HEWT, a new self-adaptive time-frequency analysis was applied to the vibration signals to obtain the instantaneous amplitude matrices. Then, the singular value vectors, as the fault feature vectors were acquired by applying the SVD. Last, the SOM was used for automatic gearbox fault identification and classification. An electromechanical model comprising an induction motor coupled with a single stage spur gearbox is considered where the vibration signals of four typical operation modes were simulated. The conditions include the healthy gearbox, input shaft slant crack, tooth cracking, and tooth surface pitting. Obtained results show that the proposed method effectively identifies the gearbox faults at an early stage and realizes automatic fault diagnosis. Moreover, performance evaluation and comparison between the proposed HEWT–SVD method and Hilbert–Huang transform (HHT)–SVD approach show that the HEWT–SVD is better for feature extraction.


2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Zhicheng Qiao ◽  
Yongqiang Liu ◽  
Yingying Liao

When the vibration signals of the rolling bearings contain strong interference noise, the spectrum division of the vibration signals is seriously disturbed by the noise. The traditional empirical wavelet transform (EWT) decomposes signals into a large number of components, and it is difficult to select suitable components that contain fault information. In order to address the problems above, in this paper, we proposed the improved empirical wavelet transform (IEWT) method. The simulation experiment proved that IEWT can solve the problem of a large number of EWT components and separate the impact component effectively which contains bearing fault information from noise. The IEWT method is combined with the support vector machine (SVM) to diagnosis the fault of the rolling bearings. The permutation entropy (PE) is used to construct feature vectors for its strong induction ability of dynamic changes of nonstationary and nonlinear signals. The crucial parameter penalty factor C and kernel parameter g of SVM are optimized by quantum genetic algorithm (QGA). Compared with traditional EWT and variational mode decomposition (VMD) methods, the effectiveness and advantages of this method are demonstrated in this study. The classification prediction ability of SVM is also better than that of K-nearest neighbor (KNN) and extreme learning machine (ELM).


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 975
Author(s):  
Yancai Xiao ◽  
Jinyu Xue ◽  
Mengdi Li ◽  
Wei Yang

Fault diagnosis of wind turbines is of great importance to reduce operating and maintenance costs of wind farms. At present, most wind turbine fault diagnosis methods are focused on single faults, and the methods for combined faults usually depend on inefficient manual analysis. Filling the gap, this paper proposes a low-pass filtering empirical wavelet transform (LPFEWT) machine learning based fault diagnosis method for combined fault of wind turbines, which can identify the fault type of wind turbines simply and efficiently without human experience and with low computation costs. In this method, low-pass filtering empirical wavelet transform is proposed to extract fault features from vibration signals, LPFEWT energies are selected to be the inputs of the fault diagnosis model, a grey wolf optimizer hyperparameter tuned support vector machine (SVM) is employed for fault diagnosis. The method is verified on a wind turbine test rig that can simulate shaft misalignment and broken gear tooth faulty conditions. Compared with other models, the proposed model has superiority for this classification problem.


2019 ◽  
Vol 9 (8) ◽  
pp. 1696 ◽  
Author(s):  
Wang ◽  
Lee

Fault characteristic extraction is attracting a great deal of attention from researchers for the fault diagnosis of rotating machinery. Generally, when a gearbox is damaged, accurate identification of the side-band features can be used to detect the condition of the machinery equipment to reduce financial losses. However, the side-band feature of damaged gears that are constantly disturbed by strong jamming is embedded in the background noise. In this paper, a hybrid signal-processing method is proposed based on a spectral subtraction (SS) denoising algorithm combined with an empirical wavelet transform (EWT) to extract the side-band feature of gear faults. Firstly, SS is used to estimate the real-time noise information, which is used to enhance the fault signal of the helical gearbox from a vibration signal with strong noise disturbance. The empirical wavelet transform can extract amplitude-modulated/frequency-modulated (AM-FM) components of a signal using different filter bands that are designed in accordance with the signal properties. The fault signal is obtained by building a flexible gear for a helical gearbox with ADAMS software. The experiment shows the feasibility and availability of the multi-body dynamics model. The spectral subtraction-based adaptive empirical wavelet transform (SS-AEWT) method was applied to estimate the gear side-band feature for different tooth breakages and the strong background noise. The verification results show that the proposed method gives a clearer indication of gear fault characteristics with different tooth breakages and the different signal-noise ratio (SNR) than the conventional EMD and LMD methods. Finally, the fault characteristic frequency of a damaged gear suggests that the proposed SS-AEWT method can accurately and reliably diagnose faults of a gearbox.


Sign in / Sign up

Export Citation Format

Share Document