Effects of phosphorus stress on the root morphology and root exudates in different sugar beet genotypes

Author(s):  
Jianchao Zhou ◽  
Xiaochun Wang ◽  
Yanhong Deng ◽  
Yan Wang
Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 131
Author(s):  
Qiwen Xu ◽  
Hao Fu ◽  
Bo Zhu ◽  
Hafiz Athar Hussain ◽  
Kangping Zhang ◽  
...  

Potassium (K) reduces the deleterious effects of drought stress on plants. However, this mitigation has been studied mainly in the aboveground plant pathways, while the effect of K on root-soil interactions in the underground part is still underexplored. Here, we conducted the experiments to investigate how K enhances plant resistance and tolerance to drought by controlling rhizosphere processes. Three culture methods (sand, water, and soil) evaluated two rapeseed cultivars’ root morphology, root exudates, soil nutrients, and microbial community structure under different K supply levels and water conditions to construct a defensive network of the underground part. We found that K supply increased the root length and density and the organic acids secretion. The organic acids were significantly associated with the available potassium decomposition, in order of formic acid > malonic acid > lactic acid > oxalic acid > citric acid. However, the mitigation had the hormesis effect, as the appropriate range of K facilitated the morphological characteristic and physiological function of the root system with increases of supply levels, while the excessive input of K could hinder the plant growth. The positive effect of K-fertilizer on soil pH, available phosphorus and available potassium content, and microbial diversity index was more significant under the water stress. The rhizosphere nutrients and pH further promoted the microbial community development by the structural equation modeling, while the non-rhizosphere nutrients had an indirect negative effect on microbes. In short, K application could alleviate drought stress on the growth and development of plants by regulating the morphology and secretion of roots and soil ecosystems.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Guan-Xi Li ◽  
Xiao-Qin Wu ◽  
Jian-Ren Ye ◽  
He-Chuan Yang

The objective of this study was to investigate whether plant-bacteria interaction affects the secretion of organic acids by both organisms and to assess whether the production of IAA by the bacterium increases the secretion of organic acids by root exudates, and if the stress produced by low available phosphorus (P) affects the production of organic acids by bacteria, by roots, or by root exudates in presence of bacterial cultures. With this purpose, we used as a biological model poplar plants and one strain ofBurkholderia multivoransable to solubilize P. High performance liquid chromatography was utilized to measure organic acids. The tests, the inductive effects of exogenous indole-3-acetic acid (IAA) on secretion of organic acids, the 2 × 4 × 2 factorial design experiment, and the ability of organic acids to solubilize tricalcium phosphate were performed to investigate the interactive effects. The results showed that, afterB. multivoransWS-FJ9 interacted with the poplar root system, the key phosphate-solubilizing driving force was gluconic acid (GA) which was produced in three ways: (1) secreted by the root system in the presence of IAA produced byB. multivoransWS-FJ9; (2) secreted byB. multivoransWS-FJ9; and (3) secreted by the poplar root system in the presence of phosphorus stress. When phosphorus stress was absent, the GA was produced as outlined in (1) and (2) above. These results demonstrated that inoculatingB. multivoransWS-FJ9 into the poplar root system could increase the amount of GA secretion and implied that the interaction betweenB. multivoransWS-FJ9 and the poplar root system could contribute to the increase of P available fraction for poplar plants.


2011 ◽  
Vol 11 (1) ◽  
pp. 121 ◽  
Author(s):  
Reza Khorassani ◽  
Ursula Hettwer ◽  
Astrid Ratzinger ◽  
Bernd Steingrobe ◽  
Petr Karlovsky ◽  
...  

2021 ◽  
Author(s):  
Adeline Becquer ◽  
Rebecca E. Haling ◽  
Anne Warren ◽  
Rowan Alden Hull ◽  
Adam Stefanski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document