Responses of Plant Growth, Root Morphology, Chlorophyll and Indoleacetic Acid to Phosphorus Stress in Trifoliate Orange

2016 ◽  
Vol 16 (1) ◽  
pp. 40-44 ◽  
Author(s):  
Chun-Yan Liu ◽  
Qiang-Sheng Wu
2018 ◽  
Vol 46 (2) ◽  
pp. 365-370 ◽  
Author(s):  
Li TIAN ◽  
Yan LI ◽  
Qiang-Sheng WU

Arbuscular mycorrhizas (AMs) need the carbohydrates from host plants for its growth, whereas it is not clear whether exogenous carbon affects mycorrhizal roles. A two-chambered rootbox was divided into root + hyphae chamber and hyphae chamber (free of roots) by 37-μm nylon mesh, in which trifoliate orange (Poncirus trifoliata) seedlings and Funneliformis mosseae were applied into root + hyphae chamber, and exogenous 40 mmol/L fructose, glucose and sucrose was applied to hyphae chamber. Application of exogenous sugars dramatically elevated root mycorrhizal colonization. Sole arbuscular mycorrhizal fungi (AMF) inoculation significantly promoted plant growth and root morphology than non-AMF treatment. Mycorrhiza-improved plant growth and root modification could be enlarged by exogenous carbon, especially fructose. Exogenous carbon markedly increased root fructose, glucose and sucrose accumulation in mycorrhizal plants, especially sucrose. Exogenous fructose significantly reduced leaf and root sucrose synthase (SS) activity in synthesis direction and increased them in cleavage direction in AMF seedlings. Exogenous glucose and sucrose heavily elevated root SS activity of mycorrhizal seedlings in synthesis and cleavage direction and reduced leaf SS activity in synthesis direction. Leaf acid invertase (AI) and neutral invertase (NI) activities of mycorrhizal seedlings were decreased by exogenous carbon, except sucrose in NI. Exogenous fructose significantly increased root AI and NI activity in mycorrhizal plants. These results implied that mycorrhizal inoculation represented positive effects on plant growth, root morphology, and sucrose metabolism of trifoliate orange, which could be magnified further by exogenous carbon, especially fructose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rui-Cheng Liu ◽  
Wei-Qin Gao ◽  
Anoop Kumar Srivastava ◽  
Ying-Ning Zou ◽  
Kamil Kuča ◽  
...  

Multiple functions of glomalin released by arbuscular mycorrhizal fungi are well-recognized, whereas the role of exogenous glomalins including easily extractable glomalin-related soil protein (EE-GRSP) and difficultly extractable glomalin-related soil protein (DE-GRSP) is unexplored for plant responses. Our study was carried out to assess the effects of exogenous EE-GRSP and DE-GRSP at varying strengths on plant growth and chlorophyll concentration of trifoliate orange (Poncirus trifoliata) seedlings, along with changes in root nutrient acquisition, auxin content, auxin-related enzyme and transporter protein gene expression, and element contents of purified GRSP. Sixteen weeks later, exogenous GRSP displayed differential effects on plant growth (height, stem diameter, leaf number, and biomass production): the increase by EE-GRSP and the decrease by DE-GRSP. The best positive effect on plant growth occurred at exogenous EE-GRSP at ½ strength. Similarly, the GRSP application also differently affected total chlorophyll content, root morphology (total length, surface area, and volume), and root N, P, and K content: positive effect by EE-GRSP and negative effect by DE-GRSP. Exogenous EE-GRSP accumulated more indoleacetic acid (IAA) in roots, which was associated with the upregulated expression of root auxin synthetic enzyme genes (PtTAA1, PtYUC3, and PtYUC4) and auxin influx transporter protein genes (PtLAX1, PtLAX2, and PtLAX3). On the other hand, exogenous DE-GRSP inhibited root IAA and indolebutyric acid (IBA) content, associated with the downregulated expression of root PtTAA1, PtLAX1, and PtLAX3. Root IAA positively correlated with root PtTAA1, PtYUC3, PtYUC4, PtLAX1, and PtLAX3 expression. Purified EE-GRSP and DE-GRSP showed similar element composition but varied in part element (C, O, P, Ca, Cu, Mn, Zn, Fe, and Mo) concentration. It concluded that exogenous GRSP triggered differential effects on growth response, and the effect was associated with the element content of pure GRSP and the change in auxins and root morphology. EE-GRSP displays a promise as a plant growth biostimulant in citriculture.


2009 ◽  
Vol 33 (5) ◽  
pp. 1227-1235 ◽  
Author(s):  
Luciano Kayser Vargas ◽  
Bruno Brito Lisboa ◽  
Gilson Schlindwein ◽  
Camille Eichelberger Granada ◽  
Adriana Giongo ◽  
...  

In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 276 ◽  
Author(s):  
Vladislav V. Yemelyanov ◽  
Victor V. Lastochkin ◽  
Tamara V. Chirkova ◽  
Sylvia M. Lindberg ◽  
Maria F. Shishova

The lack of oxygen and post-anoxic reactions cause significant alterations of plant growth and metabolism. Plant hormones are active participants in these alterations. This study focuses on auxin–a phytohormone with a wide spectrum of effects on plant growth and stress tolerance. The indoleacetic acid (IAA) content in plants was measured by ELISA. The obtained data revealed anoxia-induced accumulation of IAA in wheat and rice seedlings related to their tolerance of oxygen deprivation. The highest IAA accumulation was detected in rice roots. Subsequent reoxygenation was accompanied with a fast auxin reduction to the control level. A major difference was reported for shoots: wheat seedlings contained less than one-third of normoxic level of auxin during post-anoxia, while IAA level in rice seedlings rapidly recovered to normoxic level. It is likely that the mechanisms of auxin dynamics resulted from oxygen-induced shift in auxin degradation and transport. Exogenous IAA treatment enhanced plant survival under anoxia by decreased electrolyte leakage, production of hydrogen peroxide and lipid peroxidation. The positive effect of external IAA application coincided with improvement of tolerance to oxygen deprivation in the 35S:iaaM × 35S:iaaH lines of transgene tobacco due to its IAA overproduction.


2016 ◽  
Vol 63 (4) ◽  
pp. 491-500 ◽  
Author(s):  
Yi-Can Zhang ◽  
Peng Wang ◽  
Qing-Hua Wu ◽  
Ying-Ning Zou ◽  
Qian Bao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document