Analytical solution on dynamic response of airport rigid pavements

Author(s):  
Cai Jing ◽  
Yan Huawei
2008 ◽  
Author(s):  
Changyong Cao ◽  
Wing Gun Wong ◽  
Yang Zhong ◽  
Lam Wah Cheung

2011 ◽  
Vol 6 (1) ◽  
pp. 31-39 ◽  
Author(s):  
V.A. Sawant ◽  
V.A. Patil ◽  
Kousik Deb

2012 ◽  
Vol 232 ◽  
pp. 117-121 ◽  
Author(s):  
M. Sepehrinour ◽  
M. Nezami

Dynamic response of an electro-rheological sandwich beam subjected to simultaneous Impact loads will be considered. Analytical solution will be used to draw FRF diagram of the beam for different electric field. Upper and lower layers of the beam have different material properties. Coupled governing equations derived from Hamilton Principle will be solved in frequency domain to find transverse vibration of the beam.


2011 ◽  
Vol 105-107 ◽  
pp. 13-19
Author(s):  
Xiao Yun Liu ◽  
Chun Juan Shi ◽  
Shui Jing Chen

In order to study the dynamic response of the asphalt pavement under vehicle random stimulation, the random vibration model of vehicles and the mathematic model of pavement dynamic response in which the base and surface are all viscoelasticity are established respectively. The analytical solution of the stochastic response for the pavement is deduced. The stochastic load acted on the pavement can be gotten by the mathematic model of the vehicle vibration. The numeral feature functions of the random response, such as even function, time-space correlation function, time correlation function and mean square function, are obtained by the analytical solution. The paper provides a theory method for studying the random response of the asphalt pavement.


Author(s):  
Wenjie Ma ◽  
Yao Shan ◽  
Binglong Wang ◽  
Shunhua Zhou

The torsional dynamic response of a pile embedded in transversely isotropic saturated soil is investigated while allowing for the construction of disturbance effect. The dynamic governing equations of soil are established based on Biot’s poroelastic theory. By virtue of the continuous conditions of stress and displacement of adjacent disturbance circle and the boundary conditions of pile-soil coupling system, the circumferential displacement of soil and the shear stress on pile-soil contact surface are derived. Subsequently, a closed-form solution for the torsional dynamic response of a pile is derived in the frequency domain. By using inverse Fourier transform and the convolution theorem, a quasi-analytical solution for the velocity response of the pile head subjected to a semi-sine excitation torque is derived in the time domain. The proposed analytical solution is verified by comparing with the two existing solutions available in literature. Following the present solution, a parameter study is undertaken to portray the influence on the complex impedance, twist angle and torque of pile.


Author(s):  
H R Hamidzadeh ◽  
L Moxey

The free vibrations of circular and elliptical thin-film lens are investigated. In particular, linear closed-form solutions for free vibrations of these structures were achieved and modal analysis was performed. The vibration response of the thin-film membranes were mathematically modelled using the Mathieu equation. Numerical results for various nodal diameters were computed. For the limited case, when an elliptical lens becomes circular, an excellent comparison was established with the available analytical solution. Experimental analyses were conducted to determine the effects of various parameters, such as material properties, membrane pre-strain rate, and the geometry, on natural frequency and mode shapes of these structures. The comparison verified the adequacy of linear solutions to predict the dynamic response of thin-film lenses.


Author(s):  
L. Moxey ◽  
H. Hamidzadeh

Dynamics of circular and elliptical thin-film lens are investigated. In particular, linear closed-form solutions for free vibrations of these structures were achieved and modal analysis was performed. The vibration response of the thin film membranes were mathematically modeled using Mathieu equation. Numerical results for various nodal diameters were computed. For the limited case when an elliptical lens becomes circular, an excellent comparison was established with the available analytical solution. Experimental analyses were conducted to determine the effects of various parameters such as material properties, membrane pre strain and the geometry on the dynamic response of these structures. The comparison verified the adequacy of linear solutions to predict the dynamic response of thin film lenses.


Sign in / Sign up

Export Citation Format

Share Document