Hybrid Cyberphysical System Verification with Simplex Using Discrete Abstractions

Author(s):  
Stanley Bak ◽  
Ashley Greer ◽  
Sayan Mitra
2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


The neural network models series used in the development of an aggregated digital twin of equipment as a cyber-physical system are presented. The twins of machining accuracy, chip formation and tool wear are examined in detail. On their basis, systems for stabilization of the chip formation process during cutting and diagnose of the cutting too wear are developed. Keywords cyberphysical system; neural network model of equipment; big data, digital twin of the chip formation; digital twin of the tool wear; digital twin of nanostructured coating choice


2014 ◽  
Vol 668-669 ◽  
pp. 879-883 ◽  
Author(s):  
Yi Gang Sun ◽  
Li Sun

In order to avoid the complex mathematical modeling and ensure the reliability of avionics system verification, this paper has designed an interfaces emulation and verification platform of avionics system based on QAR data. Platform includes 2 parts: Emulator and Simulator. Simulator generates the flight environmental data which is come from QAR and transforms the data into excitation signal of devices. Emulator emulates the interface features of avionic devices according to the ICD and can be replaced with real devices. By comparing the actual input-output data of devices with QAR theoretical data, this platform can evaluate the running performance of avionic systems or devices and the rationality of the ICD.


2003 ◽  
Vol 68 (5) ◽  
pp. 85-100 ◽  
Author(s):  
C. Bui Thanh ◽  
H. Klaudel ◽  
F. Pommereau

Author(s):  
Zhe Dong ◽  
Yifei Pan ◽  
Miao Liu ◽  
Xiaojin Huang

The nuclear heating reactor (NHR) is a typical integral pressurized water reactor (iPWR) developed by the institute of nuclear and new energy technology (INET) of Tsinghua University, which has the safety advanced features such as the primary circuit integral arrangement, full-range natural circulation, self-pressurization. Power-level control is crucial for the operational stability and efficiency of the NHR, and the dynamic modeling is a basis for control system design and verification. From the conservation laws of mass, energy and momentum, a lumped-parameter dynamical model is proposed for the nuclear steam supply system (NSSS) based on the 200MWth nuclear heating reactor II (NHR200-II). The steady-state model validation is given by the comparing the parameter values of this model and that for plant design. Then, both the open-loop responses under the disturbances of reactivity and coolant flowrates as well as the closed-loop responses under the case of power ramp are given, where the rationality of the responses are analyzed from the viewpoint of plant physics and thermal-hydraulics. This model can be utilized for not only the control system design but also the development of a real-time simulator for the hardware-in-loop control system verification.


Sign in / Sign up

Export Citation Format

Share Document