On the design and optimization of digital IIR filter using oppositional artificial bee colony algorithm

Author(s):  
Kamalpreet Kaur Dhaliwal ◽  
Jaspreet Singh Dhillon
2019 ◽  
Vol 28 (09) ◽  
pp. 1950153
Author(s):  
Subhash Patel ◽  
Rajesh A. Thakker

In this work, novel swarm optimization algorithm based on the Artificial Bee Colony (ABC) algorithm called Enhanced Artificial Bee Colony (EABC) algorithm is proposed for the design and optimization of the analog CMOS circuits. The new search strategies adopted improve overall performance of the proposed algorithm. The performance of EABC algorithm is compared with other competitive algorithms such as ABC, GABC (G-best Artificial Bee Colony Algorithm) and MABC (Modified Artificial Bee Colony Algorithm) by designing three CMOS circuits; Two-stage operational amplifier, low-voltage bulk driven OTA and second generation low-voltage current conveyor in 0.13 [Formula: see text]m and 0.09[Formula: see text][Formula: see text]m CMOS technologies. The obtained results clearly indicate that the performance of EABC algorithm is better than other mentioned algorithms and it can be an effective approach for the automatic design of the analog CMOS circuits.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


2013 ◽  
Vol 32 (12) ◽  
pp. 3326-3330
Author(s):  
Yin-xue ZHANG ◽  
Xue-min TIAN ◽  
Yu-ping CAO

Sign in / Sign up

Export Citation Format

Share Document