Cantilever beam vibration from fluid interactions with triangular shape blunt body for energy harvesting application

Author(s):  
Mahidur R. Sarker ◽  
Azah Mohamed ◽  
Ramizi Mohamed
2019 ◽  
Vol 67 (3) ◽  
pp. 142-154 ◽  
Author(s):  
M. Y. Abdollahzadeh Jamalabadi ◽  
Moon K. Kwak

This study presents the analytical solution and experimental investigation of the galloping energy harvesting from oscillating elastic cantilever beam with a rigid mass. A piezoelectric wafer was attached to galloping cantilever beam to harvest vibrational energy in electric charge form. Based on Euler-Bernoulli beam assumption and piezoelectric constitutive equation, kinetic energy and potential energy of system were obtained for the proposed structure. Virtual work by generated charge and galloping force applied onto the rigid mass was obtained based on Kirchhoff's law and quasistatic assumption. Nonlinear governing electro-mechanical equations were then obtained using Hamilton's principle. As the system vibrates by self-exciting force, the fundamental mode is the only one excited by galloping. Hence, multi-degreeof-freedom equation of motion is simplified to one-degree-of-freedom model. In this study, closed-form solutions for electro-mechanical equations were obtained by using multi-scale method. Using these solutions, we can predict galloping amplitude, voltage amplitude and harvested power level. Numerical and experimental results are presented and discrepancies between experimental and numerical results are fully discussed.


2021 ◽  
Vol 11 (9) ◽  
pp. 3868
Author(s):  
Qiong Wu ◽  
Hairui Zhang ◽  
Jie Lian ◽  
Wei Zhao ◽  
Shijie Zhou ◽  
...  

The energy harvested from the renewable energy has been attracting a great potential as a source of electricity for many years; however, several challenges still exist limiting output performance, such as the package and low frequency of the wave. Here, this paper proposed a bistable vibration system for harvesting low-frequency renewable energy, the bistable vibration model consisting of an inverted cantilever beam with a mass block at the tip in a random wave environment and also develop a vibration energy harvesting system with a piezoelectric element attached to the surface of a cantilever beam. The experiment was carried out by simulating the random wave environment using the experimental equipment. The experiment result showed a mass block’s response vibration was indeed changed from a single stable vibration to a bistable oscillation when a random wave signal and a periodic signal were co-excited. It was shown that stochastic resonance phenomena can be activated reliably using the proposed bistable motion system, and, correspondingly, large-scale bistable responses can be generated to realize effective amplitude enlargement after input signals are received. Furthermore, as an important design factor, the influence of periodic excitation signals on the large-scale bistable motion activity was carefully discussed, and a solid foundation was laid for further practical energy harvesting applications.


2020 ◽  
Author(s):  
A. W. W. Atmajaya ◽  
G. Jatisukamto ◽  
A. Triono ◽  
S. N. H. Syuhri

Energy ◽  
2019 ◽  
Vol 176 ◽  
pp. 561-569 ◽  
Author(s):  
Mojtaba Ghodsi ◽  
Hamidreza Ziaiefar ◽  
Morteza Mohammadzaheri ◽  
Amur Al-Yahmedi

Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


2008 ◽  
Vol 20 (5) ◽  
pp. 625-632 ◽  
Author(s):  
Yonas Tadesse ◽  
Shujun Zhang ◽  
Shashank Priya

In this study, we report a multimodal energy harvesting device that combines electromagnetic and piezoelectric energy harvesting mechanism. The device consists of piezoelectric crystals bonded to a cantilever beam. The tip of the cantilever beam has an attached permanent magnet which, oscillates within a stationary coil fixed to the top of the package. The permanent magnet serves two purpose (i) acts as a tip mass for the cantilever beam and lowers the resonance frequency, and (ii) acts as a core which oscillates between the inductive coils resulting in electric current generation through Faraday's effect. Thus, this design combines the energy harvesting from two different mechanisms, piezoelectric and electromagnetic, on the same platform. The prototype system was optimized using the finite element software, ANSYS, to find the resonance frequency and stress distribution. The power generated from the fabricated prototype was found to be 0.25 W using the electromagnetic mechanism and 0.25 mW using the piezoelectric mechanism at 35 g acceleration and 20 Hz frequency.


Author(s):  
Jinki Kim ◽  
Patrick Dorin ◽  
K. W. Wang

Many common environmental vibration sources exhibit low and broad frequency spectra. In order to exploit such excitations, energy harvesting architectures utilizing nonlinearity, especially bistability, have been widely studied since the energetic interwell oscillations between their stable equilibria can provide enhanced power harvesting capability over a wider bandwidth compared to the linear counterpart. However, one of the limitations of these nonlinear architectures is that the interwell oscillation regime may not be activated for a low excitation level that is not strong enough to overcome the potential energy barrier, thus resulting in low amplitude intrawell response which provides poor energy harvesting performance. While the strategic integration of bistability and additional dynamic elements has shown potential to improve broadband energy harvesting performance by lowering the potential barrier, there is a clear opportunity to further improve the energy harvesting performance by extracting electrical power from the kinetic energy in the additional element that is induced when the potential barrier is lowered. To explore this opportunity and advance the state of the art, this research develops a novel hybrid bistable vibration energy harvesting system with a passive mechanism that not only adaptively lowers the potential energy barrier level to improve broadband performance but also exploits additional means to capture more usable electrical power. The proposed harvester is comprised of a cantilever beam with repulsive magnets, one attached at the free end and the other attached to a linear spring that is axially aligned with the cantilever (a spring-loaded magnet oscillator). This new approach capitalizes on the adaptive bistable potential that is passively realized by the spring-loaded magnet oscillator, which lowers the double-well potential energy barrier thereby facilitating the interwell oscillations of the cantilever across a broad range of excitation conditions, especially for low excitation amplitudes and frequencies. The interwell oscillation of the cantilever beam enhances not only the piezoelectric energy harvesting from the beam but also the electromagnetic energy harvesting from the spring-loaded magnet oscillator by inducing large amplitude vibrations of the magnet oscillator. Numerical investigations found that the proposed architecture yields significantly enhanced energy harvesting performance compared to the conventional bistable harvester with fixed magnet.


Author(s):  
Sam Fallahpasand ◽  
Morteza Dardel

In many studies, linear or small deflections according to Von Karman strain model are used for energy harvesting of beam’s structures. Analyses of these types are not reliable when deformations become large. In this work, an integro-differential equation of highly flexible cantilever beam with a piezoelectric layer is presented. The harvester is composed of a thin flexible beam with attached piezoceramic which undergoes large deformations. Periodic and chaotic oscillations and their effects on the quality of harvesting energy procedure are investigated. The obtained results showed that chaotic oscillations improve energy harvesting. This means that large deflections in high-flexible electromechanical systems let harvester to gather more energy from the external source in a much wider frequency domain. Fast Fourier transform shows the emerging lots of resonance peaks in the chaotic region, which give cascade of resonances for this highly nonlinear beam. Moreover, it is discussed how this mechanism and its frequency characteristics enhances the quality and quantity of energy harvesting. The present study show how increasing the flexibility of structure can lead to high deflection and obtaining broadband energy harvesting with better energy harvesting characteristics.


2018 ◽  
Vol 29 (9) ◽  
pp. 1900-1912 ◽  
Author(s):  
Auteliano Antunes Dos Santos ◽  
Jared D. Hobeck ◽  
Daniel J Inman

The capture of energy from vibration of mechanical systems has been extensively studied with the goal of providing power for various microelectromechanical systems. The traditional cantilever beam approach was used as a starting design for more complex, multiple-beam structures like zigzag or spiral geometries. This work presents the orthogonal spiral structure, an alternative compact periodic structure for reduced frequency energy harvesting. The proposed orthogonal spiral structure design is inspired by a combination of zigzag and Archimedean spiral geometries. The orthogonal spiral structure takes advantage of a simple cantilever beam-based design as with the zigzag, but includes the compact concentric-type design of an Archimedean spiral. First, the fundamental frequency is estimated using a lumped parameter model for the substrate beam and the results are compared with experimental results for two different sizes of orthogonal spiral structures. Then, the same model is updated to include a layer of piezoelectric material and used to identify the strain nodes along each beam obtained from the first mode shape. Finally, electromechanical modeling is developed allowing for the evaluation of the energy harvested from base excitations. The results show that the orthogonal spiral structure can be used as an alternative to current energy harvesting systems for micro scale applications.


Sign in / Sign up

Export Citation Format

Share Document