Possible Privatization Schemes for Power Generation Sector in Saudi Arabia

Author(s):  
Hussien Adel ◽  
Ahmed S. Alahmed ◽  
Ibrahim Elamin
2015 ◽  
Author(s):  
Walid Matar ◽  
Rodrigo Echeverri ◽  
Axel Pierru

2020 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Omar S. Alzaid ◽  
Basharat Salim ◽  
Jamal Orfi ◽  
Salah Khan ◽  
Hassan Alshehri

Solar and wind energy systems are attractive hybrid renewable energy systems suitable for various applications and most commonly for power generation. Compared to standalone wind and solar devices, hybrid systems have several advantages, including requiring lesser or no storage devices, being more reliable, damping the daily and seasonal variations and ensuring constant energy flows. This work aims to conduct a feasibility study and a performance analysis of a hybrid wind and solar photovoltaic (PV) power system in selected regions in the Kingdom of Saudi Arabia (KSA). A detailed review on the potential of PV, wind energy and hybrid energy systems in KSA, to reason out the potential areas of study, has identified two sites to be selected to carry out the investigation. A small size power system driven by solar and wind energy has been modeled and simulated for a year period in the selected locations. Various configuration schemes of integrated solar and wind with storage devices for such a small capacity system have been proposed and their respective performances have been evaluated. Techno-economic aspects have been included. The simulation results indicated that the developed model shows a promising future of implementing the renewable energy system in the eastern and southern regions of the Kingdom. 


Author(s):  
Ashraf Balabel ◽  
Nagy I. Elkalashy ◽  
Mohammed A. Abdel-Hakeem ◽  
Usama Hamed Issa

The healthcare facilities sector is an energy-intensive organization especially at a time of spreading dangerous infectious viruses, such as new Coronavirus, or what is known as COVID-19. Recently, many countries have opened several mobile field quarantine hospitals provided with the required technical equipment to prevent the COVID-19 outbreak in these countries. Unfortunately, most of these healthcare camps are lacking in the application of the necessary sustainability principles and health standards to become green healthcare facilities. Solar energy can be used for various purposes in green healthcare facilities, such as power generation and other sterilized applications. Therefore, in the present paper, a new design for the mobile, quick built, and solar-powered green healthcare camp, in safe and effective 24 hours a day services, is introduced. The proposed green healthcare camp is built using modern building technologies for rapid constructions, in which the building design is proposed to incorporate the photovoltaic power generation consideration. Photovoltaic systems are designed according to the loads required for the operation of the designed model of the green healthcare camp. Moreover, the total cost of a solar-powered green healthcare camp is estimated according to local conditions and standards in Saudi Arabia. The practical recommendations are presented with the designed photovoltaic system to attain the overcurrent and overvoltage protection. The photovoltaic designed system is proposed under the condition of ascertaining the service continuity of the photovoltaic power system during the electric faults in the photovoltaic strings. This is achieved by incorporating series diodes at the terminals of each photovoltaic string. The performance of a 50-kW PV system simulated using Matlab/Simulink is evaluated for the fault disturbance to enhance the service continuity.


Author(s):  
Jeffrey Goldmeer ◽  
Paul Glaser ◽  
Bassam Mohammad

Abstract The Kingdom of Saudi Arabia has seen significant transformation in power generation in the past 10 years. There has been an increase in the number of F-class combined cycle power plants being developed and brought into commercial operation. There has also been a shift to the use of natural gas as primary fuel. At the same time, there has been an interest in switching the back-up fuel for new power plants from refined distillates to domestic crude oils. Both Arabian Super Light (ASL) and Arabian Extra Light (AXL) have been proposed for use in new F-class gas turbine combined cycle power plants. This paper provides details on the combustion evaluations of ASL and AXL, as well as the first field usage of ASL in a gas turbine.


Energy Policy ◽  
2013 ◽  
Vol 62 ◽  
pp. 379-385 ◽  
Author(s):  
Mohammed Arif Abdul-Majeed ◽  
Luai M. Al-Hadhrami ◽  
Khaled Y. Al-Soufi ◽  
Firoz Ahmad ◽  
Shafiqur Rehman

Sign in / Sign up

Export Citation Format

Share Document