A Wide Temperature Range Bandgap Reference Circuit with MOS Transistor Curvature Compensation

Author(s):  
Anith Nuraini Abd Rashid ◽  
Sofiyah Sal Hamid ◽  
Nuha A. Rhaffor ◽  
Asrulnizam Abd Manaf
2012 ◽  
Vol 47 (2) ◽  
pp. 574-581 ◽  
Author(s):  
Charalambos M. Andreou ◽  
Savvas Koudounas ◽  
Julius Georgiou

2012 ◽  
Vol 588-589 ◽  
pp. 839-842 ◽  
Author(s):  
Zhi Cheng Hu ◽  
Zhi Hua Ning ◽  
Le Nian He

A low temperature coefficient, high voltage detection circuit used in Power over Ethernet is proposed. This circuit realizes the detection comparison without utilizing an extra voltage reference circuit and comparator while the temperature coefficient of the threshold voltage is as low as that of a regular bandgap reference. The proposed detection circuit is implemented in CSMC 0.5μm 60V BCD process, Cadence Spectre simulation results show that the temperature coefficient of the threshold voltage is 66.5 ppm/°C over the temperature range of -40°C to 125°C, and the maximum variation of the threshold voltage is 2.7% under all corners.


2018 ◽  
Vol 232 ◽  
pp. 04072
Author(s):  
XingGuo Tian ◽  
XiaoNing Xin ◽  
DongYang Han

In order to meet the market demand for wide temperature range and high precision bandgap voltage reference, this paper designs a bandgap reference with wide temperature range and low temperature coefficient. In this paper, the basic implementation principle of the bandgap reference is analyzed.On the basis of the traditional bandgap reference circuit structure,this design adds a trimming network and a temperature compensation network. A new Gaussian bell curve compensation technique is adopted to compensate the low temperature section, and the normal temperature section and the high temperature section respectively. Compared with the existing compensation technology, the versatility and the compensation effect is better. The designed circuit is designed and manufactured based on the Huahong HHNECGE0.35um process. The results show that the output voltage is 2.5V at 2.7V supply voltage and temperature range of -40-125°C.at typical process angle ,the temperature coefficient is 0.54618 PPm/°C,and is within 1PPm/°C at other process angles.


2014 ◽  
Vol 667 ◽  
pp. 401-404
Author(s):  
Xi Chen ◽  
Liang Li ◽  
Xing Fa Huang ◽  
Xiao Feng Shen ◽  
Ming Yuan Xu

This paper has presented a bandgap reference circuit with high-order temperature compensation. The compensation technique is achieved by using MOS transistor operating in sub-threshold region for reducing high-order TC of Vbe. The circuit is designed in 0.18¦Ìm CMOS process. Simulation results show that the proposed circuit achieves 4.2 ppm/¡æ with temperature from-55 to 125 ¡æ, which is only a third than that of first-order compensated bandgap reference.


1987 ◽  
Vol 134 (5) ◽  
pp. 291 ◽  
Author(s):  
K.T.V. Grattan ◽  
J.D. Manwell ◽  
S.M.L. Sim ◽  
C.A. Willson

Sign in / Sign up

Export Citation Format

Share Document