Plasmonic nanoparticles based flexible micro stripe pattern for cellular behavior regulation and localized pH detection

Author(s):  
Xiaoyu Wu ◽  
Wencheng Li ◽  
Shan He ◽  
Kai Yang ◽  
Yanyan Wang
2019 ◽  
Vol 179 ◽  
pp. 48-55 ◽  
Author(s):  
Bor-Shuang Liaw ◽  
Fangyu Xing ◽  
Dan Wang ◽  
Fei Gao ◽  
Jingsong Lu ◽  
...  

2003 ◽  
Vol 773 ◽  
Author(s):  
James D. Kubicek ◽  
Stephanie Brelsford ◽  
Philip R. LeDuc

AbstractMechanical stimulation of single cells has been shown to affect cellular behavior from the molecular scale to ultimate cell fate including apoptosis and proliferation. In this, the ability to control the spatiotemporal application of force on cells through their extracellular matrix connections is critical to understand the cellular response of mechanotransduction. Here, we develop and utilize a novel pressure-driven equibiaxial cell stretching device (PECS) combined with an elastomeric material to control specifically the mechanical stimulation on single cells. Cells were cultured on silicone membranes coated with molecular matrices and then a uniform pressure was introduced to the opposite surface of the membrane to stretch single cells equibiaxially. This allowed us to apply mechanical deformation to investigate the complex nature of cell shape and structure. These results will enhance our knowledge of cellular and molecular function as well as provide insights into fields including biomechanics, tissue engineering, and drug discovery.


2018 ◽  
Author(s):  
Roshna Vakkeel ◽  
Aleeza Farrukh ◽  
Aranzazu del Campo

In order to study how dynamic changes of α5β1 integrin engagement affect cellular behaviour, photoactivatable derivatives of α5β1 specific ligands are presented in this article. The presence of the photoremovable protecting group (PRPG) introduced at a relevant position for integrin recognition, temporally inhibits ligand bioactivity. Light exposure at cell-compatible dose efficiently cleaves the PRPG and restores functionality. Selective cell response (attachment, spreading, migration) to the activated ligand on the surface is achieved upon controlled exposure. Spatial and temporal control of the cellular response is demonstrated, including the possibility to in situ activation. Photoactivatable integrin-selective ligands in model microenvironments will allow the study of cellular behavior in response to changes in the activation of individual integrins as consequence of dynamic variations of matrix composition.


2013 ◽  
Vol 40 (10) ◽  
pp. 1070
Author(s):  
Cui-Mi DUAN ◽  
Hong-Yu SUN ◽  
Ye YUAN ◽  
Zhi-Qiang LIU ◽  
Rong-Yu TANG ◽  
...  

2021 ◽  
Vol 22 (12) ◽  
pp. 6372
Author(s):  
Marta d’Amora ◽  
Vittoria Raffa ◽  
Francesco De Angelis ◽  
Francesco Tantussi

Plasmonic nanoparticles are increasingly employed in several fields, thanks to their unique, promising properties. In particular, these particles exhibit a surface plasmon resonance combined with outstanding absorption and scattering properties. They are also easy to synthesize and functionalize, making them ideal for nanotechnology applications. However, the physicochemical properties of these nanoparticles can make them potentially toxic, even if their bulk metallic forms are almost inert. In this review, we aim to provide a more comprehensive understanding of the potential adverse effects of plasmonic nanoparticles in zebrafish (Danio rerio) during both development and adulthood, focusing our attention on the most common materials used, i.e., gold and silver.


Sign in / Sign up

Export Citation Format

Share Document