Simple space vector PWM scheme with quarter-wave symmetric output voltage waveform for three-phase multilevel inverter

Author(s):  
N. N. Lopatkin
Author(s):  
AMALA MINU C K ◽  
DARSANA VIJAY

In this project a design of application-based adaptable level three-phase diode clamped multilevel voltage source inverter is proposed. The inverter is designed in a fussy manner, that different levels of the inverter can be designed and simulated in a single circuit. Using select input he level switching of inverter is done. A Mat lab/Simulink model of the proposed design is modeled and simulated, with the gating signals generated using FPGA. A Phase opposition disposition sinusoidal PWM (PODSPWM) algorithm is used for generation of gating signals. The harmonic analysis of the output voltage waveform for each levels of inverter is done separately and using proposed model, verified the result. A comparison of total harmonic distortion of different levels of inverter is done. The t o t a l harmonic distortion is very low for higher level inverter. The FPGA implementation of gating signals for the proposed model is done using Xilinx Spartan 3 XCS400PQ208.


2013 ◽  
Vol 392 ◽  
pp. 409-412
Author(s):  
Xian Bin Dai ◽  
Xiao Hua Yuan ◽  
Wei Du

This paper introduces the working principle of the research of simulation in the main circuit of Static Var Generator based on Cascade H-Bride and takes the three-phase Static Var Generator based on cascade H-Bride with rated capacity 10kVar,rated voltage 380V for example to proceed the MATLAB simulation. The research shows that the more amount of cascade H-Bride, the more number of output voltage levels in the main circuit of Static Var Generator, the smaller value of voltage waveform distortion factor, and the less harmonic content be inject in electric network, which improves power index.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


Sign in / Sign up

Export Citation Format

Share Document