Balloon burster: A CORBA-based visual servoing for humanoid robot in a distributed environment

Author(s):  
Joongjae Lee ◽  
Minseok Jie ◽  
Seungsu Kim ◽  
Munho Jung ◽  
Changhwan Kim ◽  
...  
2011 ◽  
Vol 267 ◽  
pp. 904-908
Author(s):  
Qin Jun Du ◽  
Le Ping Li ◽  
Bin Dai

This document The visual is the main senses of human to capture the information, is also considered the most important apperceive component of the robot. Images information obtained by the visual sensor as a feedback, which can be constructed robot position closed loop control, which is visual servoing. In the visual servoing, the purpose of images automatic acquisition and analysis is to achieve humanoid robot control, based on the machine vision principle, the humanoid robot accomplish the feedback information in the shortest possible time, which is obtained from the image direct feedback and fast processing, these constitute a closed-loop control of the robot's positionexplains and demonstrates how to prepare your camera-ready manuscript for Trans Tech Publications. The best is to read these instructions and follow the outline of this text. The text area for your manuscript must be 17 cm wide and 25 cm high (6.7 and 9.8 inches, resp.). Do not place any text outside this area. Use good quality, white paper of approximately 21 x 29 cm or 8 x 11 inches (please do not change the document setting from A4 to letter). Your manuscript will be reduced by approximately 20% by the publisher. Please keep this in mind when designing your figures and tables etc.


Robotica ◽  
2011 ◽  
Vol 30 (5) ◽  
pp. 799-811 ◽  
Author(s):  
C. Salinas ◽  
H. Montes ◽  
G. Fernandez ◽  
P. Gonzalez de Santos ◽  
M. Armada

SUMMARYThis paper proposes a novel design of a reconfigurable humanoid robot head, based on biological likeness of human being so that the humanoid robot could agreeably interact with people in various everyday tasks. The proposed humanoid head has a modular and adaptive structural design and is equipped with three main components: frame, neck motion system and omnidirectional stereovision system modules. The omnidirectional stereovision system module being the last module, a motivating contribution with regard to other computer vision systems implemented in former humanoids, it opens new research possibilities for achieving human-like behaviour. A proposal for a real-time catadioptric stereovision system is presented, including stereo geometry for rectifying the system configuration and depth estimation. The methodology for an initial approach for visual servoing tasks is divided into two phases, first related to the robust detection of moving objects, their depth estimation and position calculation, and second the development of attention-based control strategies. Perception capabilities provided allow the extraction of 3D information from a wide range of visions from uncontrolled dynamic environments, and work results are illustrated through a number of experiments.


2009 ◽  
Vol 6 (3-4) ◽  
pp. 345-354 ◽  
Author(s):  
Daniel Fernando Tello Gamarra ◽  
Lord Kenneth Pinpin ◽  
Cecilia Laschi ◽  
Paolo Dario

This paper details the application of a forward model to improve a reaching task. The reaching task must be accomplished by a humanoid robot with 53 degrees of freedom (d.o.f.) and a stereo-vision system. We have explored via simulations a new way of constructing and utilizing a forward model that encodes eye–hand relationships. We constructed a forward model using the data obtained from only a single reaching attempt. ANFIS neural networks are used to construct the forward model, but the forward model is updated online with new information that comes from each reaching attempt. Using the obtained forward model, an initial image Jacobian is estimated and is used with a visual servoing controller. Simulation results demonstrate that errors are lower when the initial image Jacobian is derived from the forward model. This paper is one of the few attempts at applying visual servoing in a complete humanoid robot.


Author(s):  
Claudio Fantacci ◽  
Giulia Vezzani ◽  
Ugo Pattacini ◽  
Vadim Tikhanoff ◽  
Lorenzo Natale

Sign in / Sign up

Export Citation Format

Share Document