Evaluation of the impact of climatic conditions on amorphous Silicon PV module performance in the desert environment

Author(s):  
Bouchra Benabdelkrim ◽  
Ali Benatillah ◽  
Touhami Ghaitaoui ◽  
Kelthom Hammaoui
2021 ◽  
Author(s):  
Malgorzata Zdunek

<p>Due to global warming and the worldwide depletion of fossil fuel resources, there is a growing need to transform the energy system toward greater use of renewable sources. In Poland, poor air quality constitutes an additional argument for the necessity of such transition. High levels of pollutants concentrations in many locations, especially in urban and suburban areas are caused by emissions from individual heating systems running on fossil fuels.</p><p><span> Data from recent years show </span><span>that renewable generation forms the largest share of the total generation mix in Europe</span><span>. </span><span>Regarding new installation, solar and wind energy dominate renewable </span><span>capacity expansion, jointly accounting for example in 2019 for 90% of all net renewable additions.</span><span> However, along with the increase in the penetration of these energy sources also increases the sensitivity of the power system to weather and climatic conditions.</span></p><p>The study presents the impact of climate change up to the year 2100 on the photovoltaic power generation potential (Pvpot) in Poland. For determination of Pvpot index a set of high-resolution climate models projections, made available within the EURO-CORDEX initiative was used. Maps showing spatial distribution of absolute values of Pvpot in future climate (30-year average for 2071-2100) and relative changes with respect to current climate (30-year average for 2006-2035) are presented, separately for RCP4.5 and RCP8.5 scenario. The influence of meteorological conditions (temperature, wind and solar radiation) on PV module performance is taken into account by applying two different formula (Ciulla et. al, 2014 and Davy and Troccoli, 2012). Furthermore, two options for module orientation are considered: horizontal and inclined at an optimal angle.</p>


2015 ◽  
Vol 106 ◽  
pp. 1345-1355 ◽  
Author(s):  
Ahmed Bouraiou ◽  
Messaoud Hamouda ◽  
Abdelkader Chaker ◽  
Mohammed Mostefaoui ◽  
Salah Lachtar ◽  
...  

Author(s):  
Wan Juzaili Jamil ◽  
Hasimah Abdul Rahman ◽  
Kyairul Azmi Baharin

Soiling refers to the accumulation of dust on PV modules which plays a small but significant role in degrading solar photovoltaics system efficiency. Its effect cannot be generalized because the severity is location and environment dependent. Currently, there are limited studies available on the soiling effect in the hot and humid Malaysian tropical climate. This paper presents an experimental-based approach to investigate the effect of soiling on PV module performance in a tropical climate. The experiment involved a full day exposure of a polycrystalline PV module in the outdoors with accelerated artificial dust loading and an indoor experiment for testing variable dust dimensions. The findings show that for the worst case, the module’s output can be reduced by as much as 20%.


2020 ◽  
Vol 23 (1) ◽  
pp. 35-44
Author(s):  
Ali H. Numan ◽  
Zahraa Salman Dawood ◽  
Hashim A. Hussein

The partial shading conditions have a significant effect on the performance of Photovoltaic system and the ability of delivering energy. In this study, the impact of different partial shading on the mono crystalline (88W) PV module performance was investigated in this study. Horizontal string, vertical string, and single cell shading at different percentage of shading area have been studied. It is found that the horizontal string shading is more severe on the efficiency of the PV panel. In contrast, the efficiency of PV panel with cellular and vertical cell shading was less during the tests. The experimental results showed that the power losses were 99.8%, 66% and 56.8 % for horizontal, cellular and vertical shading respectively via applied non transparent material as shading element by 100% of shading area at 500 W/m2. Moreover, transparent material used to shade whole module horizontally, different shading area and different radiation level applied to find electrical characteristics of the module under these conditions. The results show that at 800W/m2 of irradiation levels and no shading condition the power was 68.6W, by increase shading area by 20% in each step, the power reducing by 44.94, 47.58, 49.42, 50.57 and 52.4% in compared with their initial value at no shading condition.


2020 ◽  
Vol 57 (6) ◽  
pp. 65-74
Author(s):  
A. Dekhane ◽  
B. Lamri ◽  
N. Benamira

AbstractAlgeria, like any other country, has drawn up its roadmap for the use and promotion of renewable energy sources. Motivated by its commitment to the international community in the fight against global warming and its possession of one of the largest solar fields in the world, a series of laws and institutions have consolidated this ambitious schedule. As known, both the climate and the geological area of Algeria take place among the foremost favoured countries in the field of solar energy. The present paper aims at proposing a simple model of photovoltaic module.The authors used Matlab/Simulink software to predict the current-voltage and power-voltage characteristics according to the influence of several factors, such as solar irradiance, cell temperature and series resistance, on the efficiency of photovoltaic module. The proposed experimental investigation can easily predict the curves (current-voltage and power-voltage) of a PV module, where both of simulation and practical results are identical. A single-crystal-line photovoltaic module was introduced close to Badji-Mokhtar Annaba University, Annaba (Algeria) to show the impact of climatic conditions in this coastal region and partial shading on characteristics.


Author(s):  
Wan Juzaili Jamil ◽  
Hasimah Abdul Rahman ◽  
Kyairul Azmi Baharin

Soiling refers to the accumulation of dust on PV modules which plays a small but significant role in degrading solar photovoltaics system efficiency. Its effect cannot be generalized because the severity is location and environment dependent. Currently, there are limited studies available on the soiling effect in the hot and humid Malaysian tropical climate. This paper presents an experimental-based approach to investigate the effect of soiling on PV module performance in a tropical climate. The experiment involved a full day exposure of a polycrystalline PV module in the outdoors with accelerated artificial dust loading and an indoor experiment for testing variable dust dimensions. The findings show that for the worst case, the module’s output can be reduced by as much as 20%.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2020 ◽  
pp. 50-64
Author(s):  
Kuladeep Kumar Sadevi ◽  
Avlokita Agrawal

With the rise in awareness of energy efficient buildings and adoption of mandatory energy conservation codes across the globe, significant change is being observed in the way the buildings are designed. With the launch of Energy Conservation Building Code (ECBC) in India, climate responsive designs and passive cooling techniques are being explored increasingly in building designs. Of all the building envelope components, roof surface has been identified as the most significant with respect to the heat gain due to the incident solar radiation on buildings, especially in tropical climatic conditions. Since ECBC specifies stringent U-Values for roof assembly, use of insulating materials is becoming popular. Along with insulation, the shading of the roof is also observed to be an important strategy for improving thermal performance of the building, especially in Warm and humid climatic conditions. This study intends to assess the impact of roof shading on building’s energy performance in comparison to that of exposed roof with insulation. A typical office building with specific geometry and schedules has been identified as base case model for this study. This building is simulated using energy modelling software ‘Design Builder’ with base case parameters as prescribed in ECBC. Further, the same building has been simulated parametrically adjusting the amount of roof insulation and roof shading simultaneously. The overall energy consumption and the envelope performance of the top floor are extracted for analysis. The results indicate that the roof shading is an effective passive cooling strategy for both naturally ventilated and air conditioned buildings in Warm and humid climates of India. It is also observed that a fully shaded roof outperforms the insulated roof as per ECBC prescription. Provision of shading over roof reduces the annual energy consumption of building in case of both insulated and uninsulated roofs. However, the impact is higher for uninsulated roofs (U-Value of 3.933 W/m2K), being 4.18% as compared to 0.59% for insulated roofs (U-Value of 0.33 W/m2K).While the general assumption is that roof insulation helps in reducing the energy consumption in tropical buildings, it is observed to be the other way when insulation is provided with roof shading. It is due to restricted heat loss during night.


Sign in / Sign up

Export Citation Format

Share Document