scholarly journals Experimental Investigation of Photovoltaic Partial Shading Losses under Different Operation Conditions

2020 ◽  
Vol 23 (1) ◽  
pp. 35-44
Author(s):  
Ali H. Numan ◽  
Zahraa Salman Dawood ◽  
Hashim A. Hussein

The partial shading conditions have a significant effect on the performance of Photovoltaic system and the ability of delivering energy. In this study, the impact of different partial shading on the mono crystalline (88W) PV module performance was investigated in this study. Horizontal string, vertical string, and single cell shading at different percentage of shading area have been studied. It is found that the horizontal string shading is more severe on the efficiency of the PV panel. In contrast, the efficiency of PV panel with cellular and vertical cell shading was less during the tests. The experimental results showed that the power losses were 99.8%, 66% and 56.8 % for horizontal, cellular and vertical shading respectively via applied non transparent material as shading element by 100% of shading area at 500 W/m2. Moreover, transparent material used to shade whole module horizontally, different shading area and different radiation level applied to find electrical characteristics of the module under these conditions. The results show that at 800W/m2 of irradiation levels and no shading condition the power was 68.6W, by increase shading area by 20% in each step, the power reducing by 44.94, 47.58, 49.42, 50.57 and 52.4% in compared with their initial value at no shading condition.

Author(s):  
K. Burhanudin ◽  
N.A. Kamarzaman ◽  
A.A.A. Samat ◽  
A.I. Tajudin ◽  
S.S. Ramli ◽  
...  

Power-Voltage (P-V) curve and Current-Voltage (I-V) curve determine the performance of the PV system. In this work, the arrangements of the PV module were reconstructed by adding the number of PV module in 3 strings configuration from 5 to 45. This method enhance the performance of the PV system as it able to show the characteristic of the P-V and I-V curve during partial shading and maximum irradiance despite higher number of PV panel. This study focuses on improving the PV array configuration and simulation speed of the PV panel. The simulation of small size PV array is possible, but the problem lies when the number of string and PV module used increases. New PV array configuration is flexible and easy to add string and increase the number of PV module. PV array configuration was modeled using MATLAB/SIMULINK software.


2020 ◽  
Vol 12 (2) ◽  
pp. 608 ◽  
Author(s):  
Ramadan J. Mustafa ◽  
Mohamed R. Gomaa ◽  
Mujahed Al-Dhaifallah ◽  
Hegazy Rezk

This study scrutinizes the reliability and validity of existing analyses that focus on the impact of various environmental factors on a photovoltaic (PV) system’s performance. For the first time, four environmental factors (the accumulation of dust, water droplets, birds’ droppings, and partial shading conditions) affecting system performance are investigated, simultaneously, in one study. The results obtained from this investigation demonstrate that the accumulation of dust, shading, and bird fouling has a significant effect on PV current and voltage, and consequently, the harvested PV energy. ‘Shading’ had the strongest influence on the efficiency of the PV modules. It was found that increasing the area of shading on a PV module surface by a quarter, half, and three quarters resulted in a power reduction of 33.7%, 45.1%, and 92.6%, respectively. However, results pertaining to the impact of water droplets on the PV panel had an inverse effect, decreasing the temperature of the PV panel, which led to an increase in the potential difference and improved the power output by at least 5.6%. Moreover, dust accumulation reduced the power output by 8.80% and the efficiency by 11.86%, while birds fouling the PV module surface was found to reduce the PV system performance by about 7.4%.


2014 ◽  
Vol 694 ◽  
pp. 163-168
Author(s):  
Liang Guo ◽  
Yun Liang ◽  
Xu Zhang ◽  
Xiao Tian Yang

With the rapid development of world economy, the energy crisis has become one of the urgent problems to be solved. Photovoltaic technology is a green new energy industry, no pollution is widely used all over the world. Typically, for photovoltaic component installation, only considering the utilization of components support cost and area, and the arrangement of components have not given enough attention. Photovoltaic module in use process will inevitably encounter the shadow, the shadow changes to make appropriate adjustments to the PV module arrangement can enhance the power generation capacity. Effect of the shadow on the photovoltaic system performance can be effectively used for photovoltaic component to bring help, is of positive significance. This study analyzed the villa model typical, and the rectangular shadow is modeling, in order to analyze the influence on the photovoltaic component. Through the conclusion of this study can determine the horizontal and vertical components of photovoltaic components which caused little damage, and provide a reference for future research of shadow and photovoltaic system performance.


In India, solar energy meets consumer energy demand and majority of the plants are grid connected. Solar power is mainly depending on two factors, which are sun ray’s incident angle and change of environment conditions. The Maximum Power Point Tracking (MPPT) of photovoltaic (PV) module is necessary to maximize the extraction of PV power under partial shading conditions. The main aim of this paper is to highlight the design and implementation of 5MW solar plant with different power tracking techniques. In addition, the detailed explanation of various materials used to design the PV module is illustrated. This paper also describes the two types of solar rating panels that are used to get high power conversion efficiency as well as continuous power supply along with that the plant cost, monthly and yearly power production and corresponding efficiency is calculated.


Author(s):  
Wan Juzaili Jamil ◽  
Hasimah Abdul Rahman ◽  
Kyairul Azmi Baharin

Soiling refers to the accumulation of dust on PV modules which plays a small but significant role in degrading solar photovoltaics system efficiency. Its effect cannot be generalized because the severity is location and environment dependent. Currently, there are limited studies available on the soiling effect in the hot and humid Malaysian tropical climate. This paper presents an experimental-based approach to investigate the effect of soiling on PV module performance in a tropical climate. The experiment involved a full day exposure of a polycrystalline PV module in the outdoors with accelerated artificial dust loading and an indoor experiment for testing variable dust dimensions. The findings show that for the worst case, the module’s output can be reduced by as much as 20%.


2021 ◽  
Author(s):  
Malgorzata Zdunek

<p>Due to global warming and the worldwide depletion of fossil fuel resources, there is a growing need to transform the energy system toward greater use of renewable sources. In Poland, poor air quality constitutes an additional argument for the necessity of such transition. High levels of pollutants concentrations in many locations, especially in urban and suburban areas are caused by emissions from individual heating systems running on fossil fuels.</p><p><span> Data from recent years show </span><span>that renewable generation forms the largest share of the total generation mix in Europe</span><span>. </span><span>Regarding new installation, solar and wind energy dominate renewable </span><span>capacity expansion, jointly accounting for example in 2019 for 90% of all net renewable additions.</span><span> However, along with the increase in the penetration of these energy sources also increases the sensitivity of the power system to weather and climatic conditions.</span></p><p>The study presents the impact of climate change up to the year 2100 on the photovoltaic power generation potential (Pvpot) in Poland. For determination of Pvpot index a set of high-resolution climate models projections, made available within the EURO-CORDEX initiative was used. Maps showing spatial distribution of absolute values of Pvpot in future climate (30-year average for 2071-2100) and relative changes with respect to current climate (30-year average for 2006-2035) are presented, separately for RCP4.5 and RCP8.5 scenario. The influence of meteorological conditions (temperature, wind and solar radiation) on PV module performance is taken into account by applying two different formula (Ciulla et. al, 2014 and Davy and Troccoli, 2012). Furthermore, two options for module orientation are considered: horizontal and inclined at an optimal angle.</p>


Author(s):  
zhang caixia ◽  
Honglie Shen ◽  
Jun Chen ◽  
Hua LI

Abstract Partial shading is very common in photovoltaic (PV) systems. The mismatch losses and hot-spot effects caused by partial shading can not only affect the output power of a solar system, but also can bring security and reliability problems. This paper centers on the silicon crystalline PV module technology subjected to operating conditions with some cells partially or fully shaded. A comparison of the electrical and hot-pot performance results for four different connection mode PV modules without shading and with partial or full shading is presented. Bypass diode of different modules would start up in the different conditions with increasing shading area. We found that the regular half-cell module degraded about 60% than its non-shaded power, which is about 30% less than the other three modules, when the short edges of these modules were shaded. The highest hot-spot temperature of the regular half-cell module was 75.5C, which is the lowest among the four modules before diode started up.


2010 ◽  
Vol 670 ◽  
pp. 391-398 ◽  
Author(s):  
Eva Paraskevadaki ◽  
S. Papathanassiou ◽  
Georgios Vokas

Photovoltaic system performance is influenced by a variety of factors such as irradiance, temperature, shading, degradation, mismatch losses, soiling, etc. Especially shading, complete or partial, can have a significant contribution to the reduction of power output, depending mainly on the PV array configuration, the shading pattern and the existence of bypass diodes incorporated in the PV module design. In order to obtain the maximum power from a PV generator, it is of great importance to evaluate the complex effects of shading on the P-V and I-V curves.


Sign in / Sign up

Export Citation Format

Share Document