Studies on elimination solutions of galvanic corrosion on microchip Al bondpads in wafer fabrication and assembly processes

Author(s):  
Hua Younan
Author(s):  
Hua Younan

Abstract A failure analysis flow is developed for surface contamination, corrosion and underetch on microchip Al bondpads and it is applied in wafer fabrication. SEM, EDX, Auger, FTIR, XPS and TOF-SIMS are used to identify the root causes. The results from carbon related contamination, galvanic corrosion, fluorine-induced corrosion, passivation underetch and Auger bondpad monitoring will be presented. The failure analysis flow will definitely help us to select suitable methods and tools for failure analysis of Al bondpad-related issues, identify rapidly possible root causes of the failures and find the eliminating solutions at both wafer fabrication and assembly houses.


2019 ◽  
Vol 25 (3) ◽  
pp. 219-223 ◽  
Author(s):  
Younan Hua ◽  
Lee Yuan Ping ◽  
Nistala R. Rao ◽  
Tian Qinghua

Author(s):  
Y. N. Hua ◽  
E. C. Low ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In our previous paper [1], discolored bondpads due to galvanic corrosion were studied. The results showed that the galvanic corrosion occurred in 0.8 ìm wafer fabrication (fab) process with cold Al alloy (Al-Si, 0.8 wt%-Cu, 0.5 wt%) metallization. Galvanic corrosion is also known as a two-metal corrosion and it could be due to either wafer fab process or assembly process. Our initial suspicion was that it was due to a DI water problem during wafer sawing at assembly process. After that, we did further failure analysis and investigation work on galvanic corrosion of bondpads and further found that galvanic corrosion might be due to longer rinsing time of DI water during wafer sawing. The rinsing time of DI water is related to the cutting time of wafer sawing. Therefore, some experiments of wafer sawing process were done by using different sizes of wafer (1/8 of wafer, a quadrant of wafer and whole of wafer) and different sawing speed (feed-rate). The results showed that if the cutting time was longer than 25 minutes, galvanic corrosion occurred on bondpads. However, if the cutting time was shorter than 25 minutes, galvanic corrosion was eliminated. Based on the experimental results, it is concluded that in order to prevent galvanic corrosion of bondpads, it is necessary to select higher feed-rate during wafer sawing process at assembly houses. In this paper, we will report the details of failure analysis and simulation experimental results, including the solution to eliminate galvanic corrosion of bondpads during wafer sawing at assembly houses.


Author(s):  
Hua Younan ◽  
Nistala Ramesh Rao ◽  
Ng Adrian ◽  
Tsai Tony

Abstract Non-stick on pad (NSOP) is a yield limiting factor that can occur due to various reasons such as particle contamination, galvanic corrosion, Fluorine-induced corrosion, process anomalies, etc. The problem of NSOP can be mitigated through a careful process characterization and optimization. In this paper, a bondpad qualification methodology (OSAT) will be discussed. It will be argued that by employing different physical analysis techniques in a failure analysis of wafer fabrication, it is possible to perform comprehensive characterization studies of the Aluminum bondpad so as to develop a robust far backend of line process. A good quality Al bondpad must meet the following four conditions-OSAT: (i) it should be no discoloration (using Optical inspection); (ii) should be defect free (using SEM inspection); (iii) should be with low contamination level (such as fluorine and carbon contamination should be within a control limit) (using Auger analysis) and (iv) should have a protective layer on bondpad surface so as to prevent bondpad corrosion (using TEM).


1996 ◽  
Vol 451 ◽  
Author(s):  
Gerald S. Frankel

ABSTRACTCorrosion of thin film structures commonly used in electronic and magnetic devices is discussed. Typical failure modes are presented, and galvanic corrosion is discussed in some detail since it is one common problem with such devices. A graphical explanation for the determination of the ohmic potential drop during galvanic corrosion is presented. The corrosion problem of thin film disks is shown to have changed during the past ten years owing to changes in disk structure. The corrosion susceptibility of two antiferromagnetic alloys used for exchange coupling to soft magnetic layers is discussed.


2020 ◽  
Vol 64 (1) ◽  
pp. 23-28
Author(s):  
J. Hodač ◽  
Z. Fulín ◽  
P. Mareš ◽  
J. Veselá ◽  
O. Chocholatý

AbstractTo produce realistic test specimens with realistic flaws, it is necessary to develop appropriate procedure for corrosion flaw production. Tested specimens are made from steels commonly used in power plants, such as carbon steels, stainless steels and their dissimilar weldments. In this study, corrosion damage from NaCl water solution and NaCl water mist are compared. Specimens were tested with and without mechanical bending stress. The corrosion processes produced plane, pitting and galvanic corrosion. On dissimilar weldments galvanic corrosion was observed and resulted to the deepest corrosion damage. Deepest corrosion flaws were formed on welded samples. The corrosion rate was also affected by the solution flow in a contact with the specimens, which results in a corrosion-erosive wear. Produced flaws are suitable as natural crack initiators or as realistic corrosion flaws in test specimens.


Sign in / Sign up

Export Citation Format

Share Document