Fabrication of organic solar cells based on a blend of donor-acceptor molecules by inkjet printing technique

Author(s):  
Ashkan Shafiee ◽  
Muhamad Mat Salleh ◽  
Muhammad Yahaya
2020 ◽  
Vol 181 ◽  
pp. 108523 ◽  
Author(s):  
Dmitry O. Balakirev ◽  
Yuriy N. Luponosov ◽  
Artur L. Mannanov ◽  
Petr S. Savchenko ◽  
Yury Minenkov ◽  
...  

RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3605-3617 ◽  
Author(s):  
Muhammad Ans ◽  
Khurshid Ayub ◽  
Ijaz Ahmad Bhatti ◽  
Javed Iqbal

Non-fullerene small acceptor molecules have gained significant attention for application in organic solar cells owing to their advantages over fullerene based acceptors.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3596
Author(s):  
Alexander N. Solodukhin ◽  
Yuriy N. Luponosov ◽  
Artur L. Mannanov ◽  
Petr S. Savchenko ◽  
Artem V. Bakirov ◽  
...  

Star-shaped donor-acceptor molecules are full of promise for organic photovoltaics and electronics. However, the effect of the branching core on physicochemical properties, charge transport and photovoltaic performance of such donor-acceptor materials in single-component (SC) and bulk heterojunction (BHJ) organic solar cells has not been thoroughly addressed. This work shows the comprehensive investigation of six star-shaped donor-acceptor molecules with terminal hexyldicyanovinyl blocks linked through 2,2′-bithiophene π-conjugated bridge to different electron-donating cores such as the pristine and fused triphenylamine, tris(2-methoxyphenyl)amine, carbazole- and benzotriindole-based units. Variation of the branching core strongly impacts on such important properties as the solubility, highest occupied molecular orbital energy, optical absorption, phase behavior, molecular packing and also on the charge-carrier mobility. The performance of SC or BHJ organic solar cells are comprehensively studied and compared. The results obtained provide insight on how to predict and fine-tune photovoltaic performance as well as properties of donor-acceptor star-shaped molecules for organic solar cells.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1200
Author(s):  
Ken-ichi Nakayama ◽  
Tatsuya Okura ◽  
Yuki Okuda ◽  
Jun Matsui ◽  
Akito Masuhara ◽  
...  

Conjugated donor–acceptor molecules with intramolecular charge transfer absorption are employed for single-component organic solar cells. Among the five types of donor–acceptor molecules, the strong push–pull structure of DTDCPB resulted in solar cells with high JSC, an internal quantum efficiency exceeding 20%, and high VOC exceeding 1 V with little photon energy loss around 0.7 eV. The exciton binding energy (EBE), which is a key factor in enhancing the photocurrent in the single-component device, was determined by quantum chemical calculation. The relationship between the photoexcited state and the device performance suggests that the strong internal charge transfer is effective for reducing the EBE. Furthermore, molecular packing in the film is shown to influence photogeneration in the film bulk.


2011 ◽  
Vol 21 (22) ◽  
pp. 4379-4387 ◽  
Author(s):  
Dora Demeter ◽  
Theodulf Rousseau ◽  
Philippe Leriche ◽  
Thomas Cauchy ◽  
Riccardo Po ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 586
Author(s):  
Ana-Gianina Gereanu ◽  
Camillo Sartorio ◽  
Aurelio Bonasera ◽  
Giuliana Giuliano ◽  
Sebastiano Cataldo ◽  
...  

This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surface energy inks can be leveraged for the fabrication of an interface suitable for a pseudo-planar heterojunction (pseudo-PHJ) organic solar cell (OSC) that is a convenient alternative to a bulk heterojunction (BHJ) OSC. The resulting thin-film morphology and molecular organization at the P3HT/PCBM interface are investigated, highlighting the roles of dissolution-driven molecular recirculation. This report represents a first step toward the sequential inkjet printing fabrication of pseudo-PHJ OSCs at low consumption of solvents/chemicals.


Sign in / Sign up

Export Citation Format

Share Document