L-band on-chip matching Si-MMIC low noise amplifier fabricated in SOI CMOS process

Author(s):  
M. Ono ◽  
N. Suematsu ◽  
Y. Yamaguchi ◽  
K. Ueda ◽  
H. Komurasaki ◽  
...  
2011 ◽  
Vol 403-408 ◽  
pp. 2809-2813
Author(s):  
Kuan Bao ◽  
Xiang Ning Fan

This paper presents a wideband low noise amplifier (LNA) for multi-standard radio applications. The low noise characteristic and input matching are simultaneously achieved by active-feedback technique. Bond-wire inductors and electrostatic devices (ESDs) are co-designed to improve the chip performance. Implemented in 0.18-μm CMOS process, the core size of the fully integrated LNA circuits is 535 μm×425 μm without any passive on-chip inductor. The simulated gain and the minimal noise figure of the CMOS LNA are 17.5 dB and 2.0 dB, respectively. The LNA achieves a -3dB bandwidth of 3.1 GHz. And the simulated IIP3 is -4.4 dBm at 2.5 GHz. Operating at 1.8V, the LNA draws a current of 7.7 mA.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
S. Chrisben Gladson ◽  
Adith Hari Narayana ◽  
V. Thenmozhi ◽  
M. Bhaskar

AbstractDue to the increased processing data rates, which is required in applications such as fifth-generation (5G) wireless networks, the battery power will discharge rapidly. Hence, there is a need for the design of novel circuit topologies to cater the demand of ultra-low voltage and low power operation. In this paper, a low-noise amplifier (LNA) operating at ultra-low voltage is proposed to address the demands of battery-powered communication devices. The LNA dual shunt peaking and has two modes of operation. In low-power mode (Mode-I), the LNA achieves a high gain ($$S21$$ S 21 ) of 18.87 dB, minimum noise figure ($${NF}_{min.}$$ NF m i n . ) of 2.5 dB in the − 3 dB frequency range of 2.3–2.9 GHz, and third-order intercept point (IIP3) of − 7.9dBm when operating at 0.6 V supply. In high-power mode (Mode-II), the achieved gain, NF, and IIP3 are 21.36 dB, 2.3 dB, and 13.78dBm respectively when operating at 1 V supply. The proposed LNA is implemented in UMC 180 nm CMOS process technology with a core area of $$0.40{\mathrm{ mm}}^{2}$$ 0.40 mm 2 and the post-layout validation is performed using Cadence SpectreRF circuit simulator.


2009 ◽  
Vol 30 (1) ◽  
pp. 015001 ◽  
Author(s):  
Yang Yi ◽  
Gao Zhuo ◽  
Yang Liqiong ◽  
Huang Lingyi ◽  
Hu Weiwu

Sign in / Sign up

Export Citation Format

Share Document