Thin-film silicon-on-insulator (SOI) device applications of selective epitaxial growth

Author(s):  
S. Venkatesan ◽  
C. Subramanian ◽  
G.W. Neudeck ◽  
J.P. Denton
1998 ◽  
Vol 72 (10) ◽  
pp. 1199-1201 ◽  
Author(s):  
Hank Shin ◽  
Stella Hong ◽  
Tom Wetteroth ◽  
Syd R. Wilson ◽  
Dieter K. Schroder

ChemInform ◽  
2010 ◽  
Vol 24 (42) ◽  
pp. no-no
Author(s):  
H. GASSEL ◽  
J. PETER-WEIDEMANN ◽  
H. VOGT

1999 ◽  
Vol 20 (5) ◽  
pp. 194-196 ◽  
Author(s):  
Sangwoo Pae ◽  
Taichi Su ◽  
J.P. Denton ◽  
G.W. Neudeck

Author(s):  
D.W. Cunningham ◽  
M.G. Mauk ◽  
J.P. Curran ◽  
A.M. Barnett

2001 ◽  
Vol 685 ◽  
Author(s):  
Ralf B. Bergmann ◽  
Christopher Berge ◽  
Titus J. Rinke ◽  
Jürgen H. Werner

AbstractThe transfer of thin monocrystalline silicon films to foreign substrates is of great interest for a number of applications such as silicon on insulator devices, active matrix displays and thin film solar cells. We present a transfer approach for the fabrication of monocrystalline Si films on foreign substrates based on the formation ofquasi-monocrystallineSi-films. Our transfer approach is compatible with high temperature processing such as epitaxial growth at 1100°C, thermal oxidation and phosphorous diffusion. Reuse of Si host wafers is demonstrated by the subsequent epitaxial growth of three monocrystalline Si films on a single host wafer. Monocrystalline Si films with a thickness of 15 µm and a diameter of 3” are transferred to glass and flexible plastic substrates. The typical light point defect density in films transferred from virgin wafers ranges between 10 to 100 cm−2, while stacking fault and dislocation densities are ≤ 100 cm−2. The minority carrier diffusion length in the epitaxial Si films is around 50 µm.


Sign in / Sign up

Export Citation Format

Share Document