Application of the neural network in diagnosis of breast cancer based on levenberg-marquardt algorithm

Author(s):  
Zeng Min ◽  
Liang Xiao ◽  
Lin Cao ◽  
Hangcheng Yan
Author(s):  
Ming Li ◽  
Huapeng Wu ◽  
Yongbo Wang ◽  
Heikki Handroos ◽  
Giuseppe Carbone

For modeling a dynamic system in practice, it often faces the difficulty in improving the accuracy of the constructed analytical model, since some components of the dynamic model are often ignored deliberately due to the difficulty of identification. It is also unwise to apply the neural network to approximate the entire dynamic system as a black box, when the comprehensive knowledge of most components of the dynamics of a large system are available. This paper proposes a method that utilizes the backpropagation (BP) neural network to identify the unknown components of the dynamic system based on the experimental front-end inputs–outputs data of the entire system. It can avoid the difficulty in getting the direct training data for the unknown components, and brings great benefits in the practical application, since to get the front-end inputs–outputs data of the entire dynamic system is easier and cost-effective. In order to train such neural network for the unknown components of dynamics, a modified Levenberg–Marquardt algorithm, which can utilize the front-end inputs–outputs data of the entire dynamic system, has been developed in the paper. Three examples from different application points of view are presented in the paper, and the results show that the proposed modified Levenberg–Marquardt algorithm is efficient to train the neural network for the unknown components of the system based on the data of entire system. The constructed dynamics model, in which the unknown components are substituted by the neural network, can satisfy the requisite accuracy successfully in the computation.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1194
Author(s):  
Azizah Suliman ◽  
Batyrkhan Omarov

In this research we train a direct distributed neural network using Levenberg-Marquardt algorithm. In order to prevent overtraining, we proposed correctly recognized image percentage based on early stop condition and conduct the experiments with different stop thresholds for image classification problem. Experiment results show that the best early stop condition is 93% and other increase in stop threshold can lead to decrease in the quality of the neural network. The correct choice of early stop condition can prevent overtraining which led to the training of a neural network with considerable number of hidden neurons.  


2020 ◽  
Vol 71 (6) ◽  
pp. 66-74
Author(s):  
Younis M. Younis ◽  
Salman H. Abbas ◽  
Farqad T. Najim ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

A comparison between artificial neural network (ANN) and multiple linear regression (MLR) models was employed to predict the heat of combustion, and the gross and net heat values, of a diesel fuel engine, based on the chemical composition of the diesel fuel. One hundred and fifty samples of Iraqi diesel provided data from chromatographic analysis. Eight parameters were applied as inputs in order to predict the gross and net heat combustion of the diesel fuel. A trial-and-error method was used to determine the shape of the individual ANN. The results showed that the prediction accuracy of the ANN model was greater than that of the MLR model in predicting the gross heat value. The best neural network for predicting the gross heating value was a back-propagation network (8-8-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.98502 for the test data. In the same way, the best neural network for predicting the net heating value was a back-propagation network (8-5-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.95112 for the test data.


Author(s):  
Nishanth Krishnaraj ◽  
A. Mary Mekala ◽  
Bhaskar M. ◽  
Ruban Nersisson ◽  
Alex Noel Joseph Raj

Early prediction of cancer type has become very crucial. Breast cancer is common to women and it leads to life threatening. Several imaging techniques have been suggested for timely detection and treatment of breast cancer. More research findings have been done to accurately detect the breast cancer. Automated whole breast ultrasound (AWBUS) is a new breast imaging technology that can render the entire breast anatomy in 3-D volume. The tissue layers in the breast are segmented and the type of lesion in the breast tissue can be identified which is essential for cancer detection. In this chapter, a u-net convolutional neural network architecture is used to implement the segmentation of breast tissues from AWBUS images into the different layers, that is, epidermis, subcutaneous, and muscular layer. The architecture was trained and tested with the AWBUS dataset images. The performance of the proposed scheme was based on accuracy, loss and the F1 score of the neural network that was calculated for each layer of the breast tissue.


Sign in / Sign up

Export Citation Format

Share Document