Modified Levenberg–Marquardt Algorithm for Backpropagation Neural Network Training in Dynamic Model Identification of Mechanical Systems

Author(s):  
Ming Li ◽  
Huapeng Wu ◽  
Yongbo Wang ◽  
Heikki Handroos ◽  
Giuseppe Carbone

For modeling a dynamic system in practice, it often faces the difficulty in improving the accuracy of the constructed analytical model, since some components of the dynamic model are often ignored deliberately due to the difficulty of identification. It is also unwise to apply the neural network to approximate the entire dynamic system as a black box, when the comprehensive knowledge of most components of the dynamics of a large system are available. This paper proposes a method that utilizes the backpropagation (BP) neural network to identify the unknown components of the dynamic system based on the experimental front-end inputs–outputs data of the entire system. It can avoid the difficulty in getting the direct training data for the unknown components, and brings great benefits in the practical application, since to get the front-end inputs–outputs data of the entire dynamic system is easier and cost-effective. In order to train such neural network for the unknown components of dynamics, a modified Levenberg–Marquardt algorithm, which can utilize the front-end inputs–outputs data of the entire dynamic system, has been developed in the paper. Three examples from different application points of view are presented in the paper, and the results show that the proposed modified Levenberg–Marquardt algorithm is efficient to train the neural network for the unknown components of the system based on the data of entire system. The constructed dynamics model, in which the unknown components are substituted by the neural network, can satisfy the requisite accuracy successfully in the computation.

2010 ◽  
Vol 54 (01) ◽  
pp. 1-14
Author(s):  
G. Rajesh ◽  
G. Giri Rajasekhar ◽  
S. K. Bhattacharyya

This paper deals with the application of nonparametric system identification to the nonlinear maneuvering of ships using neural network method. The maneuvering equations contain linear as well as nonlinear terms, and one does not attempt to determine the parameters (or hydrodynamic derivatives) associated with nonlinear terms, rather all nonlinear terms are clubbed together to form one unknown time function per equation, which are sought to be represented by neural network coefficients. The time series used in training the network are obtained from simulated data of zigzag and spiral maneuvers. The neural network has one middle or hidden layer of neurons and the Levenberg-Marquardt algorithm is used to obtain the network coefficients. Using the best choices for number of hidden layer neurons, length of training data, convergence tolerance, and so forth, the performances of the proposed neural network models have been investigated and conclusions drawn.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 1194
Author(s):  
Azizah Suliman ◽  
Batyrkhan Omarov

In this research we train a direct distributed neural network using Levenberg-Marquardt algorithm. In order to prevent overtraining, we proposed correctly recognized image percentage based on early stop condition and conduct the experiments with different stop thresholds for image classification problem. Experiment results show that the best early stop condition is 93% and other increase in stop threshold can lead to decrease in the quality of the neural network. The correct choice of early stop condition can prevent overtraining which led to the training of a neural network with considerable number of hidden neurons.  


2020 ◽  
Vol 71 (6) ◽  
pp. 66-74
Author(s):  
Younis M. Younis ◽  
Salman H. Abbas ◽  
Farqad T. Najim ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor

A comparison between artificial neural network (ANN) and multiple linear regression (MLR) models was employed to predict the heat of combustion, and the gross and net heat values, of a diesel fuel engine, based on the chemical composition of the diesel fuel. One hundred and fifty samples of Iraqi diesel provided data from chromatographic analysis. Eight parameters were applied as inputs in order to predict the gross and net heat combustion of the diesel fuel. A trial-and-error method was used to determine the shape of the individual ANN. The results showed that the prediction accuracy of the ANN model was greater than that of the MLR model in predicting the gross heat value. The best neural network for predicting the gross heating value was a back-propagation network (8-8-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.98502 for the test data. In the same way, the best neural network for predicting the net heating value was a back-propagation network (8-5-1), using the Levenberg�Marquardt algorithm for the second step of network training. R = 0.95112 for the test data.


2020 ◽  
Vol 13 (1) ◽  
pp. 34
Author(s):  
Rong Yang ◽  
Robert Wang ◽  
Yunkai Deng ◽  
Xiaoxue Jia ◽  
Heng Zhang

The random cropping data augmentation method is widely used to train convolutional neural network (CNN)-based target detectors to detect targets in optical images (e.g., COCO datasets). It can expand the scale of the dataset dozens of times while consuming only a small amount of calculations when training the neural network detector. In addition, random cropping can also greatly enhance the spatial robustness of the model, because it can make the same target appear in different positions of the sample image. Nowadays, random cropping and random flipping have become the standard configuration for those tasks with limited training data, which makes it natural to introduce them into the training of CNN-based synthetic aperture radar (SAR) image ship detectors. However, in this paper, we show that the introduction of traditional random cropping methods directly in the training of the CNN-based SAR image ship detector may generate a lot of noise in the gradient during back propagation, which hurts the detection performance. In order to eliminate the noise in the training gradient, a simple and effective training method based on feature map mask is proposed. Experiments prove that the proposed method can effectively eliminate the gradient noise introduced by random cropping and significantly improve the detection performance under a variety of evaluation indicators without increasing inference cost.


2009 ◽  
Vol 610-613 ◽  
pp. 450-453
Author(s):  
Hong Yan Duan ◽  
You Tang Li ◽  
Jin Zhang ◽  
Gui Ping He

The fracture problems of ecomaterial (aluminum alloyed cast iron) under extra-low cycle rotating bending fatigue loading were studied using artificial neural networks (ANN) in this paper. The training data were used in the formation of training set of ANN. The ANN model exhibited excellent in results comparison with the experimental results. It was concluded that predicted fracture design parameters by the trained neural network model seem more reasonable compared to approximate methods. It is possible to claim that, ANN is fairly promising prediction technique if properly used. Training ANN model was introduced at first. And then the Training data for the development of the neural network model was obtained from the experiments. The input parameters, notch depth, the presetting deflection and tip radius of the notch, and the output parameters, the cycle times of fracture were used during the network training. The neural network architecture is designed. The ANN model was developed using back propagation architecture with three layers jump connections, where every layer was connected or linked to every previous layer. The number of hidden neurons was determined according to special formula. The performance of system is summarized at last. In order to facilitate the comparisons of predicted values, the error evaluation and mean relative error are obtained. The result show that the training model has good performance, and the experimental data and predicted data from ANN are in good coherence.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Jeffrey Micher

We present a method for building a morphological generator from the output of an existing analyzer for Inuktitut, in the absence of a two-way finite state transducer which would normally provide this functionality. We make use of a sequence to sequence neural network which “translates” underlying Inuktitut morpheme sequences into surface character sequences. The neural network uses only the previous and the following morphemes as context. We report a morpheme accuracy of approximately 86%. We are able to increase this accuracy slightly by passing deep morphemes directly to output for unknown morphemes. We do not see significant improvement when increasing training data set size, and postulate possible causes for this.


Sign in / Sign up

Export Citation Format

Share Document