Anti-Plane Shear of an Elliptical Nano-Inclusions in Piezoelectric Composites with Imperfect Interfaces

Author(s):  
Yu Chen ◽  
Jun-hong Guo ◽  
Jing Yu
2018 ◽  
Vol 12 (2) ◽  
pp. 142
Author(s):  
Reza Samadi ◽  
Francois Robitaille
Keyword(s):  

1992 ◽  
Vol 20 (2) ◽  
pp. 83-105 ◽  
Author(s):  
J. P. Jeusette ◽  
M. Theves

Abstract During vehicle braking and cornering, the tire's footprint region may see high normal contact pressures and in-plane shear stresses. The corresponding resultant forces and moments are transferred to the wheel. The optimal design of the tire bead area and the wheel requires a detailed knowledge of the contact pressure and shear stress distributions at the tire/rim interface. In this study, the forces and moments obtained from the simulation of a vehicle in stationary braking/cornering conditions are applied to a quasi-static braking/cornering tire finite element model. Detailed contact pressure and shear stress distributions at the tire/rim interface are computed for heavy braking and cornering maneuvers.


Sign in / Sign up

Export Citation Format

Share Document