Runtime Verification for Distributed Cyber-Physical Systems

Author(s):  
Anik Momtaz
2017 ◽  
Vol 16 (4) ◽  
pp. 1-24 ◽  
Author(s):  
Xi Zheng ◽  
Christine Julien ◽  
Hongxu Chen ◽  
Rodion Podorozhny ◽  
Franck Cassez

10.29007/pld3 ◽  
2018 ◽  
Author(s):  
Kristin Yvonne Rozier

The need for runtime verification (RV), and tools that enable RV in practice, is widely recognized. Systems that need to operate autonomously necessitate on-board RV technolo- gies, from Mars rovers that need to sustain operation despite delayed communication from operators on Earth, to Unmanned Aerial Systems (UAS) that must fly without a human on-board, to robots operating in dynamic or hazardous environments that must take care to preserve both themselves and their surroundings. Enabling all forms of autonomy, from tele-operation to automated control to decision-making to learning, requires some ability for the autonomous system to reason about itself. The broader class of safety-critical systems require means of runtime self-checking to ensure their critical functions have not degraded during use.Runtime verification addresses a vital need for self-referential reasoning and system health management, but there is not currently a generalized approach that answers the lower-level questions. What are the inputs to RV? What are the outputs? What level(s) of the system do we need RV tools to verify, from bits and sensor signals to high-level architectures, and at what temporal frequency? How do we know our runtime verdicts are correct? How do the answers to these questions change for software, hardware, or cyber-physical systems (CPS)? How do we benchmark RV tools to assess their (comparative) suitability for particular platforms? The goal of this position paper is to fuel the discussion of ways to improve how we evaluate and compare tools for runtime verification, particularly for cyber-physical systems.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Sign in / Sign up

Export Citation Format

Share Document