A Cyclostationarity Based Esprit Algorithm for DOA Estimation of Uniform Circular Array

Author(s):  
Qiutong Zhang ◽  
Yang Liu ◽  
Xudong Long ◽  
Kaipeng Song ◽  
Xin He ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4427
Author(s):  
Xu ◽  
Wu ◽  
Yu ◽  
Guang

Estimating the Direction of Arrival (DOA) is a basic and crucial problem in array signal processing. The existing DOA methods fail to obtain reliable and accurate results when noise and reverberation occur in real applications. In this paper, an accurate and robust estimation method for estimating the DOA of sources signal is proposed. Incorporating the Estimating Signal Parameters via Rotational Invariance Techniques (ESPRIT) algorithm with the RANdom SAmple Consensus (RANSAC) algorithm gives rise to the RAN-ESPRIT method, which removes outliers automatically in noise-corrupted environments. In this work, a uniform circular array (UCA) is converted into a virtual uniform linear array (ULA) to begin with. Then, the covariance matrix of the received signals of the virtual linear array is reconstructed, and the ESPRIT algorithm is deployed to estimate initial DOA of the source signal. Finally, the modified RANSAC method with automatically selected thresholds is used to fit the source signal to obtain accurate DOA. The proposed method can remove the unreliable DOA feature data and leads to more accuracy of DOA estimation of source signals in reverberation environments. Experimental results demonstrate that the proposed method is more robust and efficient compared to the traditional methods (i.e., ESPRIT, TLS-ESPRIT).


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Di Zhao ◽  
Weijie Tan ◽  
Zhongliang Deng ◽  
Gang Li

Abstract In this paper, we present a low complexity beamspace direction-of-arrival (DOA) estimation method for uniform circular array (UCA), which is based on the single measurement vectors (SMVs) via vectorization of sparse covariance matrix. In the proposed method, we rstly transform the signal model of UCA to that of virtual uniform linear array (ULA) in beamspace domain using the beamspace transformation (BT). Subsequently, by applying the vectorization operator on the virtual ULA-like array signal model, a new dimension-reduction array signal model consists of SMVs based on Khatri-Rao (KR) product is derived. And then, the DOA estimation is converted to the convex optimization problem. Finally, simulations are carried out to verify the eectiveness of the proposed method, the results show that without knowledge of the signal number, the proposed method not only has higher DOA resolution than subspace-based methods in low signal-to-noise ratio (SNR), but also has much lower computational complexity comparing other sparse-like DOA estimation methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Xiaolong Su ◽  
Zhen Liu ◽  
Tianpeng Liu ◽  
Bo Peng ◽  
Xin Chen ◽  
...  

Coherent source localization is a common problem in signal processing. In this paper, a sparse representation method is considered to deal with two-dimensional (2D) direction of arrival (DOA) estimation for coherent sources with a uniform circular array (UCA). Considering that objective function requires sparsity in the spatial dimension but does not require sparsity in time, singular value decomposition (SVD) is employed to reduce computational complexity and ℓ2 norm is utilized to renew objective function. After the new objective function is constructed to evaluate residual and sparsity, a second-order cone (SOC) programming is employed to solve convex optimization problem and obtain 2D spatial spectrum. Simulations show that the proposed method can deal with the case of coherent source localization, which has higher resolution than 2D MUSIC method and does not need to estimate the number of coherent sources in advance.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5532 ◽  
Author(s):  
Mohamed Moussa ◽  
Abdalla Osman ◽  
Mohamed Tamazin ◽  
Michael J. Korenberg ◽  
Aboelmagd Noureldin

GPS jamming is a considerable threat to applications that rely on GPS position, velocity, and time. Jamming detection is the first step in the mitigation process. The direction of arrival (DOA) estimation of jamming signals is affected by resolution. In the presence of multiple jamming sources whose spatial separation is very narrow, an incorrect number of jammers can be detected. Consequently, mitigation will be affected. The ultimate objective of this research is to enhance GPS receivers’ anti-jamming abilities. This research proposes an enhancement to the anti-jamming detection ability of GPS receivers that are equipped with a uniform linear array (ULA) and uniform circular array (UCA). The proposed array processing method utilizes fast orthogonal search (FOS) to target the accurate detection of the DOA of both single and multiple in-band CW jammers. Its performance is compared to the classical method and MUSIC. GPS signals obtained from a Spirent GSS6700 simulator and CW jamming signals were used. The proposed method produces a threefold advantage, higher accuracy DOA estimates, amplitudes, and a correct number of jammers. Therefore, the anti-jamming process can be significantly improved by limiting the erroneous spatial attenuation of GPS signals arriving from an angle close to the jammer.


Sign in / Sign up

Export Citation Format

Share Document