Effect of mutual coupling and manufacturing error of array for DOA estimation of ESPRIT algorithm

2006 ◽  
Vol 89 (9) ◽  
pp. 68-76 ◽  
Author(s):  
Yuki Inoue ◽  
Hiroyuki Arai
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hongyong Wang ◽  
Weibo Deng ◽  
Ying Suo ◽  
Xin Zhang ◽  
Yanmo Hu ◽  
...  

In array, mutual coupling between the antennas is inevitable, which has an adverse effect on the estimation of parameters. To reduce the mutual coupling between the antennas of distributed nested arrays, this paper proposes a new array called the distributed super nested arrays, which have the good characteristics of the distributed nested arrays and can reduce the mutual coupling between the antennas. Then, an improved multiscale estimating signal parameter via rotational invariance techniques (ESPRIT) algorithm is presented for the distributed super nested arrays to improve the accuracy of direction-of-arrival (DOA) estimation. Next, we analyze the limitations of the spatial smoothing algorithm used by the distributed super nested arrays when there are multiple-source signals and the influence of the baseline length of distributed super nested arrays on the accuracy of DOA estimation. The simulation results show that the distributed super nested arrays can effectively reduce the mutual coupling between the array antennas, improve the DOA estimation performance, and significantly increase the number of detectable source signals.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950049
Author(s):  
Lingyun Xu ◽  
Fangqing Wen

Two-dimensional direction-of-arrival (2D-DOA) estimation for uniform rectangular array (URA) is a canonical problem with numerous applications, e.g., wireless communications, sonar and radar systems. The conventional 2D-DOA estimators usually are derived with the assumption of ideal arrays. However, in practice, the arrays may not be well calibrated and suffer from unknown mutual coupling. Using the conventional estimators may lead to low accuracy estimation and high computational complexity in the condition of large number of array elements. In this paper, a novel real-valued parallel factor (PARAFAC) decomposition algorithm is proposed to tackle this problem. The proposed algorithm has better angle estimation performance than the multiple signal classification (MUSIC) algorithm, estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm and conventional PARAFAC algorithm. But it has lower complexity than MUSIC algorithm. Moreover, the proposed algorithm can obtain automatically paired 2D-DOA estimation, and it is suitable to coherent or closely spaced signals and can eliminate the mutual coupling. Simulation results verify the effectiveness of the proposed algorithm.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1057
Author(s):  
Qifeng Wang ◽  
Xiaolin Hu ◽  
Xiaobao Deng ◽  
Nicholas E. Buris

Antenna element mutual coupling degrades the performance of Direction of Arrival (DoA) estimation significantly. In this paper, a novel machine learning-based method via Neural Tangent Kernel (NTK) is employed to address the DoA estimation problem under the effect of electromagnetic mutual coupling. NTK originates from Deep Neural Network (DNN) considerations, based on the limiting case of an infinite number of neurons in each layer, which ultimately leads to very efficient estimators. With the help of the Polynomial Root Finding (PRF) technique, an advanced method, NTK-PRF, is proposed. The method adapts well to multiple-signal scenarios when sources are far apart. Numerical simulations are carried out to demonstrate that this NTK-PRF approach can handle, accurately and very efficiently, multiple-signal DoA estimation problems with realistic mutual coupling.


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Lei Sun ◽  
Minglei Yang ◽  
Baixiao Chen

Sparse planar arrays, such as the billboard array, the open box array, and the two-dimensional nested array, have drawn lots of interest owing to their ability of two-dimensional angle estimation. Unfortunately, these arrays often suffer from mutual-coupling problems due to the large number of sensor pairs with small spacing d (usually equal to a half wavelength), which will degrade the performance of direction of arrival (DOA) estimation. Recently, the two-dimensional half-open box array and the hourglass array are proposed to reduce the mutual coupling. But both of them still have many sensor pairs with small spacing d, which implies that the reduction of mutual coupling is still limited. In this paper, we propose a new sparse planar array which has fewer number of sensor pairs with small spacing d. It is named as the thermos array because its shape seems like a thermos. Although the resulting difference coarray (DCA) of the thermos array is not hole-free, a large filled rectangular part in the DCA can be facilitated to perform spatial-smoothing-based DOA estimation. Moreover, it enjoys closed-form expressions for the sensor locations and the number of available degrees of freedom. Simulations show that the thermos array can achieve better DOA estimation performance than the hourglass array in the presence of mutual coupling, which indicates that our thermos array is more robust to the mutual-coupling array.


2018 ◽  
Vol 54 (23) ◽  
pp. 1346-1348 ◽  
Author(s):  
Dandan Meng ◽  
Xianpeng Wang ◽  
Mengxing Huang ◽  
Chong Shen

2019 ◽  
Vol 23 (2) ◽  
pp. 290-293 ◽  
Author(s):  
Xianpeng Wang ◽  
Dandan Meng ◽  
Mengxing Huang ◽  
Liantian Wan

Sign in / Sign up

Export Citation Format

Share Document