Humanoid Vision Design for Object Detection, Localization and Mapping in Indoor Environments

Author(s):  
Yuki Omori ◽  
Tomonari Furukawa ◽  
Tatsuya Ishikawa ◽  
Masayuki Inaba
2020 ◽  
pp. 930-954 ◽  
Author(s):  
Heba Gaber ◽  
Mohamed Marey ◽  
Safaa Amin ◽  
Mohamed F. Tolba

Mapping and exploration for the purpose of navigation in unknown or partially unknown environments is a challenging problem, especially in indoor environments where GPS signals can't give the required accuracy. This chapter discusses the main aspects for designing a Simultaneous Localization and Mapping (SLAM) system architecture with the ability to function in situations where map information or current positions are initially unknown or partially unknown and where environment modifications are possible. Achieving this capability makes these systems significantly more autonomous and ideal for a large range of applications, especially indoor navigation for humans and for robotic missions. This chapter surveys the existing algorithms and technologies used for localization and mapping and highlights on using SLAM algorithms for indoor navigation. Also the proposed approach for the current research is presented.


Author(s):  
Ali Gürcan Özkil ◽  
Thomas Howard

This paper presents a new and practical method for mapping and annotating indoor environments for mobile robot use. The method makes use of 2D occupancy grid maps for metric representation, and topology maps to indicate the connectivity of the ‘places-of-interests’ in the environment. Novel use of 2D visual tags allows encoding information physically at places-of-interest. Moreover, using physical characteristics of the visual tags (i.e. paper size) is exploited to recover relative poses of the tags in the environment using a simple camera. This method extends tag encoding to simultaneous localization and mapping in topology space, and fuses camera and robot pose estimations to build an automatically annotated global topo-metric map. It is developed as a framework for a hospital service robot and tested in a real hospital. Experiments show that the method is capable of producing globally consistent, automatically annotated hybrid metric-topological maps that is needed by mobile service robots.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1742 ◽  
Author(s):  
Chuang Qian ◽  
Hongjuan Zhang ◽  
Jian Tang ◽  
Bijun Li ◽  
Hui Liu

An indoor map is a piece of infrastructure associated with location-based services. Simultaneous Localization and Mapping (SLAM)-based mobile mapping is an efficient method to construct an indoor map. This paper proposes an SLAM algorithm based on a laser scanner and an Inertial Measurement Unit (IMU) for 2D indoor mapping. A grid-based occupancy likelihood map is chosen as the map representation method and is built from all previous scans. Scan-to-map matching is utilized to find the optimal rigid-body transformation in order to avoid the accumulation of matching errors. Map generation and update are probabilistically motivated. According to the assumption that the orthogonal is the main feature of indoor environments, we propose a lightweight segment extraction method, based on the orthogonal blurred segments (OBS) method. Instead of calculating the parameters of segments, we give the scan points contained in blurred segments a greater weight during the construction of the grid-based occupancy likelihood map, which we call the orthogonal feature weighted occupancy likelihood map (OWOLM). The OWOLM enhances the occupancy likelihood map by fusing the orthogonal features. It can filter out noise scan points, produced by objects, such as glass cabinets and bookcases. Experiments were carried out in a library, which is a representative indoor environment, consisting of orthogonal features. The experimental result proves that, compared with the general occupancy likelihood map, the OWOLM can effectively reduce accumulated errors and construct a clearer indoor map.


Sensors ◽  
2016 ◽  
Vol 16 (8) ◽  
pp. 1180 ◽  
Author(s):  
Alejandra Hernández ◽  
Clara Gómez ◽  
Jonathan Crespo ◽  
Ramón Barber

Robotica ◽  
2007 ◽  
Vol 25 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Staffan Ekvall ◽  
Danica Kragic ◽  
Patric Jensfelt

SUMMARYThe problem studied in this paper is a mobile robot that autonomously navigates in a domestic environment, builds a map as it moves along and localizes its position in it. In addition, the robot detects predefined objects, estimates their position in the environment and integrates this with the localization module to automatically put the objects in the generated map. Thus, we demonstrate one of the possible strategies for the integration of spatial and semantic knowledge in a service robot scenario where a simultaneous localization and mapping (SLAM) and object detection recognition system work in synergy to provide a richer representation of the environment than it would be possible with either of the methods alone. Most SLAM systems build maps that are only used for localizing the robot. Such maps are typically based on grids or different types of features such as point and lines. The novelty is the augmentation of this process with an object-recognition system that detects objects in the environment and puts them in the map generated by the SLAM system. The metric map is also split into topological entities corresponding to rooms. In this way, the user can command the robot to retrieve a certain object from a certain room. We present the results of map building and an extensive evaluation of the object detection algorithm performed in an indoor setting.


Author(s):  
M. Nakagawa ◽  
T. Kamio ◽  
H. Yasojima ◽  
T. Kobayashi

Users require navigation for many location-based applications using moving sensors, such as autonomous robot control, mapping route navigation and mobile infrastructure inspection. In indoor environments, indoor positioning systems using GNSSs can provide seamless indoor-outdoor positioning and navigation services. However, instabilities in sensor position data acquisition remain, because the indoor environment is more complex than the outdoor environment. On the other hand, simultaneous localization and mapping processing is better than indoor positioning for measurement accuracy and sensor cost. However, it is not easy to estimate position data from a single viewpoint directly. Based on these technical issues, we focus on geofencing techniques to improve position data acquisition. In this research, we propose a methodology to estimate more stable position or location data using unstable position data based on geofencing in indoor environments. We verify our methodology through experiments in indoor environments.


Author(s):  
H. A. Mohamed ◽  
A. Moussa ◽  
M. M. Elhabiby ◽  
N. El-Sheimy

<p><strong>Abstract.</strong> The autonomous vehicles, such as wheeled robots and drones, efficiently contribute in the search and rescue operations. Specially for indoor environments, these autonomous vehicles rely on simultaneous localization and mapping approach (SLAM) to construct a map for the unknown environment and simultaneously to estimate the vehicle’s position inside this map. The result of the scan matching process, which is a key step in many of SLAM approaches, has a fundamental role of the accuracy of the map construction. Typically, local and global scan matching approaches, that utilize laser scan rangefinder, suffer from accumulated errors as both approaches are sensitive to previous history. The reference key frame (RKF) algorithm reduces errors accumulation as it decreases the dependency on the accuracy of the previous history. However, the RKF algorithm still suffers; as most of the SLAM approaches, from scale shrinking problem during scanning corridors that exceed the maximum detection range of the laser scan rangefinder. The shrinking in long corridors comes from the unsuccessful estimation of the longitudinal movement from the implemented RKF algorithm and the unavailability of this information from external source as well. This paper proposes an improvement for the RKF algorithm. This is achieved by integrating the outcomes of the optical flow with the RKF algorithm using extended Kalman filter (EKF) to overcome the shrinking problem. The performance of the proposed algorithm is compared with the RKF, iterative closest point (ICP), and Hector SLAM in corridors that exceed the maximum detection range of the laser scan rangefinder.</p>


Author(s):  
N. Botteghi ◽  
B. Sirmacek ◽  
R. Schulte ◽  
M. Poel ◽  
C. Brune

Abstract. In this research, we investigate the use of Reinforcement Learning (RL) for an effective and robust solution for exploring unknown and indoor environments and reconstructing their maps. We benefit from a Simultaneous Localization and Mapping (SLAM) algorithm for real-time robot localization and mapping. Three different reward functions are compared and tested in different environments with growing complexity. The performances of the three different RL-based path planners are assessed not only on the training environments, but also on an a priori unseen environment to test the generalization properties of the policies. The results indicate that RL-based planners trained to maximize the coverage of the map are able to consistently explore and construct the maps of different indoor environments.


Sign in / Sign up

Export Citation Format

Share Document