Design of Meander Dipole Antenna Structure for 5G Wireless Applications

Author(s):  
T. Perarasi ◽  
K.Shoukath Ali ◽  
M. Leeban Moses ◽  
C. Poongodi ◽  
D. Deepa ◽  
...  
2018 ◽  
Vol 7 (2.7) ◽  
pp. 952
Author(s):  
V Teju ◽  
P V. P. S Nikhil ◽  
A Pranusha ◽  
Ch Divya ◽  
G Bhanuprakash

This paper proposes single element of micro-stripe antenna having wider bandwidth and also its arrays which are implemented for wire-less applications. In contemplation of wide frequency range of operation, antenna is fed with integrated balun. The single element antenna works under frequency range of 34GHz to 46GHz where reflection loss is less than -10dB and the obtained gain is 2.1 dBi. The linear 8-element array of antenna has been implemented and to obtain low mutual coupling between the elements of antenna a rectangular stub has been implemented. By enforcing the array methodology the not only the overall gain of the antenna has increased but also results in wider scanning angle.  


2011 ◽  
Vol 324 ◽  
pp. 434-436
Author(s):  
R. Abi Saad ◽  
Zeina Melhem ◽  
Chadi Nader ◽  
Youssef Zaatar ◽  
Doumit Zaouk

in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


Author(s):  
Jwo-Shiun Sun ◽  
Guan-Yu Chen ◽  
Sen-Yi Huang ◽  
Chuang-Jen Huang ◽  
Kuo-Liang Wu ◽  
...  

Author(s):  
Norun Abdul Malek ◽  
Nur Alyaa Che Sabri ◽  
Md Rafiqul Islam ◽  
Sarah Yasmin Mohamad ◽  
Farah Nadia Mohd Isa

2014 ◽  
Vol 94 (7) ◽  
pp. 21-23 ◽  
Author(s):  
Mohammad Tareq ◽  
Dewan Ashraful Alam ◽  
Mazidul Islam ◽  
Razin Ahmed

Author(s):  
Fatima Ez-Zaki ◽  
Hassan Belahrach ◽  
Abdelilah Ghammaz

Abstract Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$ 2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.


2016 ◽  
Vol 12 (1) ◽  
pp. 23-29
Author(s):  
Sarthak Singhal ◽  
Nand Verma ◽  
Amit Singh

In this paper, a semi-elliptical annular slot loaded trapezoidal dipole antenna with band-notched characteristics for UWB applications is designed. A microstrip feedline consisting of multiple feedline sections is used for improving the impedance matching. The band-notched characteristics for WLAN band are achieved by loading the trapezoidal dipole arms with semi-elliptical annular slots. The designed antenna structure has an operating range from 3.5-12.4 GHz(109%) with band-rejection in the frequency range of 5-6 GHz. Nearly omnidirectional patterns are achieved for the designed antenna structure. The designed antenna structure provided an average peak gain of 2.12 dB over the entire frequency range except in the notched band where it reduced to -2.4 dB. The experimental and simulation results are observed to be in good agreement. An improved bandwidth performance with miniaturized dimensions as compared to earlier reported antenna structures is achieved.


Frequenz ◽  
2016 ◽  
Vol 70 (3-4) ◽  
Author(s):  
Sarthak Singhal ◽  
Nand Kishor Verma ◽  
Amit Kumar Singh

AbstractA hex-sided rounded dipole antenna (HSRDA) for UWB applications is presented. It is designed by the addition of semi-elliptical patch sections at the edges of a square bow-tie antenna. The antenna structure is fed by a modified microstrip feedline for better impedance matching. An impedance bandwidth of 2.9–11.4 GHz is achieved. The antenna structure has quasi omnidirectional radiation patterns and reasonable gain over the same frequency range. A good agreement between the experimental and simulation results is observed. The proposed antenna structure has miniaturized size for the same bandwidth as compared to already reported antenna structures.


Sign in / Sign up

Export Citation Format

Share Document