Broadband microstrip antennas with Cantor set fractal slots for vehicular communications

Author(s):  
Fatima Ez-Zaki ◽  
Hassan Belahrach ◽  
Abdelilah Ghammaz

Abstract Vehicle-to-everything communications (V2X), whose main objective is to improve security and efficiency, are provided by ad hoc vehicle networks that allow communication between vehicles. In the current study, a hexagonal microstrip patch antenna has been developed to cover the navigational frequencies, WiMAX at 3.7 GHz and DSRC/IEEE802.11p at 5.9 GHz to meet the demands of various vehicular applications. The antenna design is based on Cantor fractal slot, partial ground plane, and inset feed which is directly fed through the microstrip line. The proposed antenna shields the frequency band from 3.22 to 6.5 GHz with VSWR $\lt$ 2 within all the frequency bands. The presented antenna can resonate well in the 5.85–5.95 GHz band assigned for DSRC/IEEE802.11p and 3.7 GHz assigned for LTE/V2X. Simulated antenna gain varies from 3.06 to 5.25 dB within the operated frequency range providing an omnidirectional simulated radiation pattern in the most azimuth plane. To prove the validity of the simulation results, the chosen antenna structure has been fabricated and tested using a vector network analyzer MS2630. The measurement shows good results, which make the antenna suitable for wireless applications of interest.

2011 ◽  
Vol 324 ◽  
pp. 434-436
Author(s):  
R. Abi Saad ◽  
Zeina Melhem ◽  
Chadi Nader ◽  
Youssef Zaatar ◽  
Doumit Zaouk

in this paper, we propose a new multi-band patch antenna structure for embedded RFID (Radio Frequency Identification) readers and wireless communications. The proposed antenna is a dual band microstrip patch antenna using U-slot geometry. The operating frequencies of the proposed antenna are chosen as 2.4 and 0.9 (GHz), obtained by optimizing the physical dimensions of the U-slot. Several parameters have been investigated using Ansoft Designer software. The antenna is fed through a quarter wavelength transformer for impedance matching. An additional layer of alumina is added above the surface of the conductors to increase the performance of the antenna.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


2016 ◽  
Vol 9 (5) ◽  
pp. 1179-1184 ◽  
Author(s):  
Kalyan Mondal ◽  
Partha Pratim Sarkar

In this work, microstrip antenna with W- and V-shaped radiating patches have been proposed. Here square- and circular-shaped modified ground planes have been designed by poly tetra fluoro ethylene (PTFE) substrate with dielectric constant 2.4. Broadband with high gain is obtained by optimum selection of radiating patch with modified ground plane. The ground planes are modified by loading a U-shaped slot. The simulated and measured results are compared. Considering −10 dB impedance bandwidth maximum frequency band of 6.97 GHz (3.04–10.01 GHz) with percentage bandwidth of 106.8% is achieved. The proposed antenna exhibits maximum peak gain of 5.1 dBi. The simulation and measurement have been done by Ansoft designer software and vector network analyzer.


2016 ◽  
Vol 9 (5) ◽  
pp. 1191-1196 ◽  
Author(s):  
Yogesh Kumar Choukiker ◽  
Jagadish Chandra Mudiganti

A compact size hybrid fractal antenna is proposed for the application in wideband frequency range. The proposed antenna structure is the combination of Koch curve and self-affine fractal geometries. The Koch curve and self-affine geometries are optimized to achieve a wide bandwidth. The feed circuit is a microstrip line with a matching section over a rectangular ground plane. The measured impedance matching fractal bandwidth (S11 ≤ −10 dB) is 72.37% from 1.6 to 3.4 GHz. An acceptable agreement is obtained from the simulated and measured antenna performance parameters.


In this paper, a metamaterial based compact multiband rectangular microstrip patch antenna is proposed. The return loss of metamaterial loaded microstrip patch antenna obtained at the resonant frequency 2.4GHz. The metamaterial structure printed on FR4 substrate at hight of 1.6mm from the ground plane. The FR4 substrate has 4.4 dielectric constant.These metamterial structures are periodic in nature and possesses negative permittivity and negative permeability. The greatest advantage of metamaterial loading will be miniaturization. This metamterial loaded rectangular patch antenna is simulated and tested using HFSS Simulator, where an electromagnetic analysis tool is used. The fabricated antennas results are measured using Vector Network Analyzer (VNA).


2009 ◽  
Vol 10 ◽  
pp. 171-184 ◽  
Author(s):  
Dalia Mohammed Nashaat Elsheakh ◽  
Hala A. Elsadek ◽  
Esmat Abdel-Fattah Abdallah ◽  
Magdy F. Iskander ◽  
Hadia Elhenawy

Author(s):  
Kalyan Mondal

In this work, a broadband high gain frequency selective surface (FSS)-based microstrip patch antenna is proposed. The dimensions of the microstrip antenna and proposed FSS are [Formula: see text] and [Formula: see text]. A broadband high gain reference antenna has been selected to improve antenna performance. The reference antenna offers 1.2[Formula: see text]GHz bandwidth with 6.03[Formula: see text]dBi peak gain. Some modifications have been done on the patch and ground plane to enhance the bandwidth and gain. The impedance bandwidth of 7.70[Formula: see text]GHz (3.42–11.12[Formula: see text]GHz) with 4.9 dBi peak gain is achieved by the microstrip antenna without FSS. The antenna performance is improved by using FSS beneath the antenna structure. The maximum impedance bandwidth of 7.70[Formula: see text]GHz (3.32–11.02[Formula: see text]GHz) and peak gain of 8.6[Formula: see text]dBi are achieved by the proposed antenna with FSS. Maximum co- and cross-polarization differences are 21[Formula: see text]dB. The simulation and measurement have been done using Ansoft Designer software and vector network analyzer. The measured results are in good parity with the simulated one.


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents the bandwidth enhancement of a Proximity Coupled Feed Rectangular Microstrip Patch Antenna using a new Defected Ground Structure - an ‘inverted SHA’ shaped slot on the ground plane of the proximity coupled feed rectangular Microstrip patch antenna. The parameters such as Bandwidth, Return loss, VSWR and Radiation efficiency are improved in the proposed antenna than simple proximity coupled feed rectangular Microstrip patch antenna without Defected Ground Structure. A comparison is also shown for the proposed Microstrip patch antenna with the antenna structure without Defected Ground Structure. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 180 MHz. A very good return loss of -47.9223 dB is obtained for the Microstrip patch antenna with an ’inverted SHA’ shaped Defected Ground Structure. Implementing an ‘inverted SHA’ shaped defect in the ground plane of the proximity coupled feed rectangular Microstrip patch antenna results in 5.3% improvement in bandwidth with 16.01% reduction in the overall area of the ground plane as compared to the Microstrip patch antenna without Defected Ground Structure.</p>


Author(s):  
Sushila Gupta ◽  
Esha Johari

This paper describes dual-band patch antenna. The dual-band operation is obtained by embedding a pair of Lshaped slots. Dual band antenna can reduce the size of antenna 40%, comparing with rectangular microstrip antennas on normal dielectric substrate, and have wider bandwidths for both bands. In this paper L-shaped slots patch antenna with length L= 25.74 mm and width W = 31.20 mm fabricated based on availability of Rogers Duorid 5880 dielectric material and a prototype antenna is developed. The dielectric constant of Rogers Duorid 5880 material is e= 2.2 having thickness h = 0.16 mm and copper thickness is 35 microns using a coaxial feeding method for dual band operation. The prototype antenna is operating in S band frequency range.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


Sign in / Sign up

Export Citation Format

Share Document