Elliptical Annular Slot Loaded Trapezoidal Dipole Antenna for Band-Notched UWB Applications

2016 ◽  
Vol 12 (1) ◽  
pp. 23-29
Author(s):  
Sarthak Singhal ◽  
Nand Verma ◽  
Amit Singh

In this paper, a semi-elliptical annular slot loaded trapezoidal dipole antenna with band-notched characteristics for UWB applications is designed. A microstrip feedline consisting of multiple feedline sections is used for improving the impedance matching. The band-notched characteristics for WLAN band are achieved by loading the trapezoidal dipole arms with semi-elliptical annular slots. The designed antenna structure has an operating range from 3.5-12.4 GHz(109%) with band-rejection in the frequency range of 5-6 GHz. Nearly omnidirectional patterns are achieved for the designed antenna structure. The designed antenna structure provided an average peak gain of 2.12 dB over the entire frequency range except in the notched band where it reduced to -2.4 dB. The experimental and simulation results are observed to be in good agreement. An improved bandwidth performance with miniaturized dimensions as compared to earlier reported antenna structures is achieved.

Frequenz ◽  
2016 ◽  
Vol 70 (3-4) ◽  
Author(s):  
Sarthak Singhal ◽  
Nand Kishor Verma ◽  
Amit Kumar Singh

AbstractA hex-sided rounded dipole antenna (HSRDA) for UWB applications is presented. It is designed by the addition of semi-elliptical patch sections at the edges of a square bow-tie antenna. The antenna structure is fed by a modified microstrip feedline for better impedance matching. An impedance bandwidth of 2.9–11.4 GHz is achieved. The antenna structure has quasi omnidirectional radiation patterns and reasonable gain over the same frequency range. A good agreement between the experimental and simulation results is observed. The proposed antenna structure has miniaturized size for the same bandwidth as compared to already reported antenna structures.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


2021 ◽  
Vol 21 (4) ◽  
pp. 291-298
Author(s):  
Chandana SaiRam ◽  
Damera Vakula ◽  
Mada Chakravarthy

In this paper, a novel compact broadband antenna at UHF frequencies is presented with canonical shapes. Hemispherical, conical and cylindrical shapes have all been considered for antenna configuration. The designed antenna provides an instantaneous frequency range from 370 to 5,000 MHz with omnidirectional characteristics. The antenna was simulated in CST Microwave Studio, fabricated and evaluated; the results are presented. The simulated and measurement results are in good agreement. The antenna has voltage standing wave ratio (VSWR) ≤ 1.9:1 in 400–570 MHz, 2,530–3,740 MHz and 4,180–4,620 MHz; it has VSWR ≤ 3:1 over the operating frequency range 370–5,000 MHz and the measured gain varies from -0.6 to 4.5 dBi over the frequency band. The concept of canonical-shaped antenna elements and the incorporation of triple sleeves resulted in a reduction of the length of the antenna by 62% compared to the length of a half-wave dipole antenna designed at the lowest frequency. The antenna can be used for trans-receiving applications in wireless communication.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pichet Moeikham ◽  
Chatree Mahatthanajatuphat ◽  
Prayoot Akkaraekthalin

The limitation of the electromagnetic interferences (EMIs) caused by UWB radiating sources into WLAN/WiMAX communication systems operating in the frequency band located around 5.5 GHz requires the adoption of appropriate design features. To this purpose, a notch filter integrated into an UWB antenna, which is able to ensure a better electrical insulation between the two mentioned communication systems with respect to that already presented by the authors Moeikham et al. (2011), is proposed in this paper. The proposed filter, consisting in a rectangular slot including a quarter-wavelength strip integrated on the lower inner edge of the UWB radiating patch, is capable of reducing the energy emission in the frequency range between 5.1 and 5.75 GHz resulting in lower EMIs with sensible electronic equipments working in this frequency band. The antenna structure has no need to be tuned after inserting the rectangle slot with a quarter-wavelength strip. The proposed antenna has potential to minimize the EMIs at a frequency range from 5.1 to 5.75 GHz. The radiation patterns are given nearly omnidirectional in plane and likely bidirectional in plane at all frequencies by the proposed antenna. Therefore, this antenna is suitable to apply for various UWB applications.


A novel design of Ultra-Wideband (UWB) antenna with irregularly shaped hexagonal patch built on the elliptical-shaped FR-4 laminate with εr = 4.3 and tanδ = 0.025 is presented. The feed mechanism utilized in the structure proposed is modified co-planar waveguide (CPW), the feeding microstrip is tapered near the connecting edge of the patch for better impedance matching. The proposed antenna is compared with the traditional rectangular substrate and found that the elliptical substrate enhances the radiation characteristics of the antenna and is capable of functioning effectively in the range of 3.1 GHz-11.7 GHz, accompanied by the total efficiency > 86% across the whole FCC allocated UWB operating band. The antenna can be used for wide range of UWB applications as it exhibits good omnidirectional characteristics with a realized peak gain of 4.178dB and an average realized gain of 3.063dB. The simulation work of the antenna is accomplished using CST Studio (v. 2014).


2021 ◽  
Vol 12 ◽  
pp. 1392-1403
Author(s):  
Mikhail M Krasnov ◽  
Natalia D Novikova ◽  
Roger Cattaneo ◽  
Alexey A Kalenyuk ◽  
Vladimir M Krasnov

Impedance matching and heat management are important factors influencing the performance of terahertz sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor Bi2Sr2CaCu2O8+δ. Two types of devices are considered containing either a conventional large single crystal or a whisker. We perform numerical simulations for various geometrical configurations and parameters and make a comparison with experimental data for the two types of devices. It is demonstrated that the structure and the geometry of both the superconductor and the electrodes play important roles. In crystal-based devices an overlap between the crystal and the electrode leads to appearance of a large parasitic capacitance, which shunts terahertz emission and prevents impedance matching with open space. The overlap is avoided in whisker-based devices. Furthermore, the whisker and the electrodes form a turnstile (crossed-dipole) antenna facilitating good impedance matching. This leads to more than an order of magnitude enhancement of the radiation power efficiency in whisker-based, compared to crystal-based, devices. These results are in good agreement with presented experimental data.


A novel arrow shaped planar multiband antenna based on apollonian gasket and Soddy’s circle with Defective Ground Structure (DGS) is described in this paper. The structure is designed on an FR4_epoxy substrate (εr=4.4).The performance is evaluated using HFSS software. The antenna displays multiband behaviour in the frequency range from 3 to 10 GHz which is suitable for wireless communications applications.The antenna gives tri-frequency response in LTE range(600 MHz6GHz):1.17 GHz, 3.44 GHz and 6 GHz;and tetra frequency response in the UWB frequency range(3 GHz to 10 GHz): 8.1 GHz, 9.5 GHz, 11.8 GHz & 13.5 GHz which could be used in wireless and radar communications.The overall performance of the antenna demonstrates an average impedance bandwidth(IBW) of 300 MHz with a good impedance matching (S11< -10 dB).The proposed antenna has the satisfactory radiation characteristics throughout its operating band. The measured highest gain differs from 1 dBi to 1.9 dBi inthe entire frequency range.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bhakkiyalakshmi Ramakrishnan ◽  
Vasanthi Murugiah Sivashanmugham

Abstract This article proposes a dual band rejected double slits-based planar octagonal microstrip antenna for Ultra-Wideband (UWB) applications. The antenna built by an edge trimmed partial ground and an octagonal microstrip patch with a horizontal and an inclined rectangular slit. The slits are made to remove the interfering frequency bands WiMAX and WLAN from UWB band. The designed antenna without slits operates on the frequency range 2.78–10.78 GHz with a fractional bandwidth of 119% which includes the UWB frequency band 3.1–10.6 GHz. The antenna with diagonal inclined slit notches the band 4.4–5.83 GHz which excluded WLAN frequency range and shift the starting frequency of UWB band to the right from 2.78 to 3.26 GHz. The antenna with both horizontal and inclined slits further shifts the starting frequency from 3.26 to 3.619 GHz, eliminating the WiMAX band. The excluded bands show the VSWR value greater than 2 dBi whereas the rest of the band has less than 2 dBi. The proposed antenna results in nearly omnidirectional radiation pattern, 6.2 dBi peak gain and 85% radiation efficiency.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Aiting Wu ◽  
Boran Guan

A compact CPW-fed planar UWB antenna with dual band-notched property is presented. The dual band rejection is achieved by etching a C-shaped slot on the radiation patch and two L-shaped parasitic strips in the ground plane. The experimental and measured results show that the proposed antenna exhibits an impedance bandwidth over an ultrawideband frequency range from 2.4 to 12.5 GHz with VSWR less than 2, except for two stopbands at 3.3 to 3.75 GHz and 5.07 to 5.83 GHz for filtering the WiMAX and WLAN signals, respectively. It also demonstrates a nearly omnidirectional radiation pattern. The fabricated antenna has a tiny size, only 32 mm × 32 mm × 0.508 mm. The simulated results are compared with the measured performance and show good agreement. The simple structure, compact size, and good characteristics make the proposed antenna an excellent candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document