Hex-Sided Rounded Dipole Antenna (HSRDA) For UWB Applications

Frequenz ◽  
2016 ◽  
Vol 70 (3-4) ◽  
Author(s):  
Sarthak Singhal ◽  
Nand Kishor Verma ◽  
Amit Kumar Singh

AbstractA hex-sided rounded dipole antenna (HSRDA) for UWB applications is presented. It is designed by the addition of semi-elliptical patch sections at the edges of a square bow-tie antenna. The antenna structure is fed by a modified microstrip feedline for better impedance matching. An impedance bandwidth of 2.9–11.4 GHz is achieved. The antenna structure has quasi omnidirectional radiation patterns and reasonable gain over the same frequency range. A good agreement between the experimental and simulation results is observed. The proposed antenna structure has miniaturized size for the same bandwidth as compared to already reported antenna structures.

2016 ◽  
Vol 12 (1) ◽  
pp. 23-29
Author(s):  
Sarthak Singhal ◽  
Nand Verma ◽  
Amit Singh

In this paper, a semi-elliptical annular slot loaded trapezoidal dipole antenna with band-notched characteristics for UWB applications is designed. A microstrip feedline consisting of multiple feedline sections is used for improving the impedance matching. The band-notched characteristics for WLAN band are achieved by loading the trapezoidal dipole arms with semi-elliptical annular slots. The designed antenna structure has an operating range from 3.5-12.4 GHz(109%) with band-rejection in the frequency range of 5-6 GHz. Nearly omnidirectional patterns are achieved for the designed antenna structure. The designed antenna structure provided an average peak gain of 2.12 dB over the entire frequency range except in the notched band where it reduced to -2.4 dB. The experimental and simulation results are observed to be in good agreement. An improved bandwidth performance with miniaturized dimensions as compared to earlier reported antenna structures is achieved.


2015 ◽  
Vol 9 (2) ◽  
pp. 373-379 ◽  
Author(s):  
Sarthak Singhal ◽  
Ankit Pandey ◽  
Amit Kumar Singh

A coplanar waveguide (CPW)-fed circular-shaped fractal antenna with third iterative orthogonal elliptical slot for ultra-wideband applications is presented. The bandwidth is enhanced by using successive iterations of radiating patch, CPW feedline, and tapered ground plane. An impedance bandwidth of 2.9–20.6 GHz is achieved. The designed antenna has omnidirectional radiation patterns along with average peak realized gain of 3.5 dB over the entire frequency range of operation. A good agreement is observed between the simulated and experimental results. This antenna structure has the advantages of miniaturized size and wide bandwidth in comparison to previously reported fractal structures.


Frequenz ◽  
2020 ◽  
Vol 74 (5-6) ◽  
pp. 201-209
Author(s):  
Mohammad Ahmad Salamin ◽  
Sudipta Das ◽  
Asmaa Zugari

AbstractIn this paper, a novel compact UWB antenna with variable notched band characteristics for UWB applications is presented. The designed antenna primarily consists of an adjusted elliptical shaped metallic patch and a partial ground plane. The proposed antenna has a compact size of only 17 × 17 mm2. The suggested antenna covers the frequency range from 3.1 GHz to 12 GHz. A single notched band has been achieved at 7.4 GHz with the aid of integrating a novel closed loop resonator at the back plane of the antenna. This notched band can be utilized to alleviate the interference impact with the downlink X-band applications. Besides, a square slot was cut in the loop in order to obtain a variable notched band. With the absence and the existence of this slot, the notched band can be varied to mitigate interference of the upper WLAN band (5.72–5.82 GHz) and X-band (7.25–7.75 GHz) with UWB applications. A good agreement between measurement and simulation results was achieved, which affirms the appropriateness of this antenna for UWB applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Pichet Moeikham ◽  
Chatree Mahatthanajatuphat ◽  
Prayoot Akkaraekthalin

The limitation of the electromagnetic interferences (EMIs) caused by UWB radiating sources into WLAN/WiMAX communication systems operating in the frequency band located around 5.5 GHz requires the adoption of appropriate design features. To this purpose, a notch filter integrated into an UWB antenna, which is able to ensure a better electrical insulation between the two mentioned communication systems with respect to that already presented by the authors Moeikham et al. (2011), is proposed in this paper. The proposed filter, consisting in a rectangular slot including a quarter-wavelength strip integrated on the lower inner edge of the UWB radiating patch, is capable of reducing the energy emission in the frequency range between 5.1 and 5.75 GHz resulting in lower EMIs with sensible electronic equipments working in this frequency band. The antenna structure has no need to be tuned after inserting the rectangle slot with a quarter-wavelength strip. The proposed antenna has potential to minimize the EMIs at a frequency range from 5.1 to 5.75 GHz. The radiation patterns are given nearly omnidirectional in plane and likely bidirectional in plane at all frequencies by the proposed antenna. Therefore, this antenna is suitable to apply for various UWB applications.


Frequenz ◽  
2016 ◽  
Vol 70 (11-12) ◽  
Author(s):  
Sarthak Singhal ◽  
Amit Kumar Singh

AbstractA CPW-fed 8-shaped monopole antenna for ultra wideband applications is presented. It consists of a 8-shaped monopole and two quarter elliptical coplanar waveguide ground planes. An impedance bandwidth from 5.4 GHz to 23.83 GHz is achieved. The radiation patterns are observed to be omnidirectional and bidirectional in E-and H-plane respectively at lower resonances. At higher frequencies, the radiation patterns are found to be nearly omnidirectional in both planes. The group delay variation is also observed to be constant in the operating frequency range. A good agreement is found between the simulation and experimental results. The designed antenna structure has miniaturized dimensions and wider bandwidth as compared to other already reported monopole structures.


2016 ◽  
Vol 9 (3) ◽  
pp. 711-717 ◽  
Author(s):  
X. Chen ◽  
L. Yang ◽  
L. Wang ◽  
G. Fu

A super-wideband (SWB) omnidirectional antenna is reported in Lau et al. in 2005 and 2008, but the antenna structure was complex and the radiation properties were unsatisfactory. In this paper, a SWB omnidirectional antenna with simple structure and improved radiation properties is presented. The antenna just consists of a two-stage inverted cone and two shorting pins. The proposed two-stage cone can improve the impedance matching in super-wide bandwidth, and the optimized shorting pins can reduce the cut-off frequency more than 50%. The calculated and measured results are investigated to confirm the antenna performances. The impedance bandwidth of the antenna for voltage standing wave ratio ≤ 2 achieves more than 1:22.1, covering 0.905 GHz to the above band. The smaller sizes than those referred by Lau et al. in 2008 are obtained. The profile of the antenna is 0.078λc, and the diameter of the radiation body is 0.217λc (λc is the wavelength of the cut-off frequency of the antenna). In addition, the radiation properties of the kind of SWB omnidirectional antenna are improved obviously. In the whole band, the ripple levels in horizontal radiation patterns are not more than 6.6 dB, and the cross-polarized levels are reduced by 9 dB.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Souphanna Vongsack ◽  
Chuwong Phongcharoenpanich ◽  
Sompol Kosulvit ◽  
Kazuhiko Hamamoto ◽  
Toshio Wakabayashi

This research presents a rectangular ring antenna excited by a circular disc monopole (CDM) mounted in front of a square reflector. The proposed antenna is designed to cover a frequency range of 2.300–5.825 GHz and thereby is suitable for WiMAX applications. Multiple parametric studies were carried out using the CST Microwave Studio simulation program. A prototype antenna was fabricated and experimented. The measurements were taken and compared with the simulation results, which indicates good agreement between both results. The prototype antenna produces an impedance bandwidth (|S11|< −10 dB) that covers the WiMAX frequency range and a constant unidirectional radiation pattern (θ=0°and∅=90°). The minimum and maximum gains are 3.7 and 8.7 dBi, respectively. The proposed antenna is of compact size and has good unidirectional radiation performance. Thus, it is very suitable for a multitude of WiMAX applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Hui Zhao ◽  
Fushun Zhang ◽  
Chunyang Wang ◽  
Jiangang Liang

A compact printed ultrawideband (UWB) diversity antenna with a size of 30 mm × 36 mm operating at a frequency range of 3.1–10.6 GHz is proposed. The antenna is composed of two semielliptical monopoles fed by two microstrip lines. Two semicircular slots, two rectangular slots, and one stub are introduced in the ground plane to adjust the impedance bandwidth of the antenna and improve the isolation between two feeding ports. The simulated and measured results show that impedance bandwidth of the proposed antenna can cover the whole UWB band with a good isolation of < −15 dB. The radiation patterns, peak antenna gain, and envelope correlation coefficient are also measured and discussed. The measured results show that the proposed antenna can be a good candidate for some portable MIMO/diversity UWB applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Aiting Wu ◽  
Boran Guan

A compact CPW-fed planar UWB antenna with dual band-notched property is presented. The dual band rejection is achieved by etching a C-shaped slot on the radiation patch and two L-shaped parasitic strips in the ground plane. The experimental and measured results show that the proposed antenna exhibits an impedance bandwidth over an ultrawideband frequency range from 2.4 to 12.5 GHz with VSWR less than 2, except for two stopbands at 3.3 to 3.75 GHz and 5.07 to 5.83 GHz for filtering the WiMAX and WLAN signals, respectively. It also demonstrates a nearly omnidirectional radiation pattern. The fabricated antenna has a tiny size, only 32 mm × 32 mm × 0.508 mm. The simulated results are compared with the measured performance and show good agreement. The simple structure, compact size, and good characteristics make the proposed antenna an excellent candidate for UWB applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
S. Vongsack ◽  
S. Lamultree ◽  
P. Osklang ◽  
C. Phongcharoenpanich ◽  
S. Kosulvit ◽  
...  

This paper presents an ultra-wideband (UWB) rectangular ring antenna excited by a circular disc monopole (CDM) with a conducting rod and two double ridges to radiate bidirectional pattern with constant beam direction along the entire UWB frequency range of 3.1–10.6 GHz. The conducting rod and double ridges at the upper wall of the ring are added to solve the tilted beam problem at the higher edge frequency whereas the double ridges at the lower wall are used to enhance the impedance bandwidth. The dimensions of the rectangular ring and the CDM are initially considered to achieve the bidirectional pattern with the suitable resonant frequencies and bandwidth. Then, the parameters of copper rod and two double ridges are determined by parametric study using CST Microwave Studio simulation software. The prototype antenna was fabricated, and the measured results show good agreement with the simulated ones. The obtained bandwidth of |S11|<-10 dB can cover the UWB frequency range as well as the bidirectional beam radiation with constant beam direction (θ=0°,180° and ϕ=90°). The minimum and maximum measured gains are 3.1 dBi to 5.3 dBi, respectively. The proposed antenna possesses compact size with good radiation performance that can be a promising candidate for UWB applications.


Sign in / Sign up

Export Citation Format

Share Document