Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymers films

1994 ◽  
Author(s):  
T.W. Hagler
1992 ◽  
Vol 247 ◽  
Author(s):  
D. Guo ◽  
S. Mazumdar ◽  
G. I. Stegeman ◽  
M. Cha ◽  
D. Neher ◽  
...  

The third order nonlinear optical properties of conjugated polymers have been considered promising since the 1970s when Sauteret et al reported large non-resonant values in PTS.[1] Although it is well-understood that the physical origin of the nonlinearities is due to the delocalization of the π-electrons, the details, and how best to calculate them have been the focus of a continuing theoretical dialogue. Until recently, experimental investigations of nonlinearities have been limited to only a few wavelengths. Now third harmonic generation (THG), which accesses only the electronic nonlinearities, can be performed over wide spectral ranges, for example from 500 to 2000 nm. The resulting third harmonic wavelength typically spans the electronic molecular transitions associated with the nonlinearities. By measuring the spectral distribution of both the amplitude and phase of the third harmonic signal, the dominant transitions (between the“essential states”) contributing to the nonlinearity can be identified. Such information is most useful for comparing with theories in which the oscillator strengths (transition dipole moments) for the various molecular transitions are calculated.


RSC Advances ◽  
2020 ◽  
Vol 10 (70) ◽  
pp. 42897-42902
Author(s):  
Chan Hee Lee ◽  
Shin Hyung Choi ◽  
Sung Joon Oh ◽  
Jun Hyeon Lee ◽  
Jae Won Shim ◽  
...  

The linear D–A–D type of molecular structure of AcPYM and PxPYM enhances the horizontally oriented alignment and up to 87% of the horizontal transition dipole moments in the host matrix is realized.


2020 ◽  
Vol 117 (51) ◽  
pp. 32395-32401
Author(s):  
Jitka Myšková ◽  
Olga Rybakova ◽  
Jiří Brynda ◽  
Petro Khoroshyy ◽  
Alexey Bondar ◽  
...  

Fluorescent molecules are like antennas: The rate at which they absorb light depends on their orientation with respect to the incoming light wave, and the apparent intensity of their emission depends on their orientation with respect to the observer. However, the directions along which the most important fluorescent molecules in biology, fluorescent proteins (FPs), absorb and emit light are generally not known. Our optical and X-ray investigations of FP crystals have now allowed us to determine the molecular orientations of the excitation and emission transition dipole moments in the FPs mTurquoise2, eGFP, and mCherry, and the photoconvertible FP mEos4b. Our results will allow using FP directionality in studies of molecular and biological processes, but also in development of novel bioengineering and bioelectronics applications.


Sign in / Sign up

Export Citation Format

Share Document