Mobility Management for Femtocells in LTE-Advanced: Key Aspects and Survey of Handover Decision Algorithms

2014 ◽  
Vol 16 (1) ◽  
pp. 64-91 ◽  
Author(s):  
Dionysis Xenakis ◽  
Nikos Passas ◽  
Lazaros Merakos ◽  
Christos Verikoukis
Author(s):  
Umar Danjuma Maiwada ◽  
Aminu Aminu Muazu ◽  
Izaddeen Kabi Yakasai

Deployment of mini macrocell base stations can also be referred to as femtocells improve quality of service of indoor and outdoor users. Nevertheless, mobility management remains a key issue with regards to their deployment. This paper is leaned towards this issue, with in-depth focus on the most important aspect of mobility management - handover. In handover management, making a handover decision in the LTE two-tier macrocell femtocell network is a crucial research area. Decision algorithms in this research, are classified and comparatively analyzed according to received signal strength, user equipment speed, cost function and interference. However, it was observed that most of the discussed decision algorithms fail to consider cell selection with hybrid access policy in a single macrocell multiple femtocell scenario, another observation was a majority of these algorithms lack the incorporation of user equipment residence parameter. Not including this parameter boosts the number of unnecessary handover occurrence. To deal with these issues, a sophisticated handover decision algorithm is proposed. The proposed algorithm considers the user’s velocity, received signal strength, residence time as well as the femtocell base station’s access policy. Simulation results have shown that the proposed algorithm reduces the number of unnecessary handovers when compared to conventional received signal strength based handover decision algorithm.


Author(s):  
Kengo Yagyu ◽  
Takeshi Nakamori ◽  
Hiroyuki Ishii ◽  
Mikio Iwamura ◽  
Nobuhiko Miki ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ibraheem Shayea ◽  
Mahamod Ismail ◽  
Rosdiadee Nordin ◽  
Hafizal Mohamad

Although Long Term Evolution Advanced (LTE-Advanced) system has benefited from Carrier Aggregation (CA) technology, the advent of CA technology has increased handover scenario probability through user mobility. That leads to a user’s throughput degradation and its outage probability. Therefore, a handover decision algorithm must be designed properly in order to contribute effectively for reducing this phenomenon. In this paper, Multi-Influence Factors for Adaptive Handover Decision Algorithm (MIF-AHODA) have been proposed through CA implementation in LTE-Advanced system. MIF-AHODA adaptively makes handover decisions based on different decision algorithms, which are selected based on the handover scenario type and resource availability. Simulation results show that MIF-AHODA enhances system performance better than the other considered algorithms from the literature by 8.3 dB, 46%, and 51% as average gains over all the considered algorithms in terms of SINR, cell-edge spectral efficiency, and outage probability reduction, respectively.


Sign in / Sign up

Export Citation Format

Share Document