handover decision
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 50)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dong-Fang Wu ◽  
Chuanhe Huang ◽  
Yabo Yin ◽  
Shidong Huang ◽  
M. Wasim Abbas Ashraf ◽  
...  

The frequent handover and handover failure problems obviously degrade the QoS of mobile users in the terrestrial segment (e.g., cellular networks) of satellite-terrestrial integrated networks (STINs). And the traditional handover decision methods rely on the historical data and produce the training cost. To solve these problems, the deep reinforcement learning- (DRL-) based handover decision methods are used in the handover management. In the existing DQN-based handover decision method, the overestimates of DQN method continue. Moreover, the current handover decision methods adopt the greedy strategy which lead to the load imbalance problem in base stations. Considering the handover decision and load imbalance problems, we proposed a load balancing-based double deep Q-network (LB-DDQN) method for handover decision. In the proposed load balancing strategy, we define a load coefficient to express the conditions of loading in each base station. The supplementary load balancing evaluation function evaluates the performance of this load balancing strategy. As the selected basic method, the DDQN method adopts the target Q-network and main Q-network to deal with the overestimate problem of the DQN method. Different from joint optimization, we input the load reward into the designed reward function. And the load coefficient becomes one handover decision factor. In our research, the handover decision and load imbalance problems are solved effectively and jointly. The experimental results show that the proposed LB-DDQN handover decision method obtains good performance in the handover decision. Moreover, the access of mobile users becomes more balancing and the throughput of network is also increased.


2021 ◽  
Author(s):  
Sajjad Ahmad Khan ◽  
Ibraheem Shayea ◽  
Mustafa Ergen ◽  
Ayman A. El-Saleh ◽  
Mardeni Roslee

Author(s):  
Saida DRIOUACHE ◽  
Najib Naja ◽  
Abdellah Jamali

In emerging heterogeneous networks, seamless vertical handover is a critical issue. There must be a trade-off between the handover decision delay and accuracy. This paper’s concern is to contribute to reliable vertical handover decision making that makes a trade-off between complexity and effectiveness. So, the paper proposes a neuro-fuzzy architecture that joints the capacity of learning of the artificial neural networks with the power of linguistic interpretation of the fuzzy logic. The architecture can learn from experience how executing a handover to a particular access network affects the quality of service. Simulation results reveal that this architecture is fast, enhances the overall performance and reliability better than the fuzzy logic-based approach.


Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 2016
Author(s):  
Amit Kumar Gupta ◽  
Vikas Goel ◽  
Ruchi Rani Garg ◽  
D. R. Thirupurasundari ◽  
Ankit Verma ◽  
...  

Handover usually deals with the mobility of the end users in a mobile network to assure about the ongoing session of a user. It is observed that frequent handover results in call dropping due to latency. In order to overcome this issue, a fuzzy based handover decision scheme for mobile devices using a predictive model is proposed. First, an MFNN (Multi-layer Feed Forward Network) is used to determine the next cell of the user along with best hand off time. To obtain the best access network, multiple-attribute Access Network Selection Function (ANSF) is used. The fuzzy rule is applied by considering the parameter data rate, reliability, signal strength, battery power and mobility as input and the output obtained is the optimal network. The proposed scheme selects the best access network and enhances the quality of services.


Author(s):  
Shaik Mazhar Hussain ◽  
Kamaludin Mohamad Yusof ◽  
Rolito Asuncion ◽  
Shaik Ashfaq Hussain

Internet of vehicles (IoV) is an emerging area that gives support for vehicles via internet assisted communication. IoV with 5G provides ubiquitous connectivity due to the participation of more than one radio access network. The mobility of vehicles demands to make handover in such heterogeneous network. The vehicles at short range uses dedicated short range communication (DSRC), while it has to use better technology for long range and any type of traffic. Usually, the previous work will directly select the network for handover or it connects with available radio access. Due to this, the occurrence of handover takes place frequently.  In this paper, the integration of DSRC, LTE and mmWave 5G on IoV is incorporated with novel handover decision making, network selection and routing. The handover decision is to ensure whether there is a need for vertical handover by using Dynamic Q-learning algorithm that uses entropy function for threshold prediction as per the current characteristics of the environment. Then the network selection is based on fuzzy-convolution neural network (F-CNN) that creates fuzzy rules from signal strength, distance, vehicle density, data type and line of sight. V2V chain routing is proposed to select V2V pairs using jellyfish optimization algorithm (JOA) that takes in account of channel, vehicle and transmission metrics. This system is developed in OMNeT++ simulator and the performances are evaluated in terms of success probability, handover failure, unnecessary handover, mean throughput, delay and packet loss.


2021 ◽  
Vol 10 (1) ◽  
pp. 44-54
Author(s):  
Siddharth Goutam ◽  
Srija Unnikrishnan ◽  
Sundary S. Prabavathy ◽  
Archana Karandikar

Sign in / Sign up

Export Citation Format

Share Document