Towards the integration of thermal physics and geometrical constraints for a 3D-multiphysical sketcher

Author(s):  
S. Papa ◽  
S. Patalano ◽  
A. Lanzotti ◽  
S. Gerbino ◽  
J.Y. Choley
Author(s):  
J. Temple Black

The output of the ultramicrotomy process with its high strain levels is dependent upon the input, ie., the nature of the material being machined. Apart from the geometrical constraints offered by the rake and clearance faces of the tool, each material is free to deform in whatever manner necessary to satisfy its material structure and interatomic constraints. Noncrystalline materials appear to survive the process undamaged when observed in the TEM. As has been demonstrated however microtomed plastics do in fact suffer damage to the top and bottom surfaces of the section regardless of the sharpness of the cutting edge or the tool material. The energy required to seperate the section from the block is not easily propogated through the section because the material is amorphous in nature and has no preferred crystalline planes upon which defects can move large distances to relieve the applied stress. Thus, the cutting stresses are supported elastically in the internal or bulk and plastically in the surfaces. The elastic strain can be recovered while the plastic strain is not reversible and will remain in the section after cutting is complete.


1998 ◽  
Vol 29 (1-3) ◽  
pp. 66-84
Author(s):  
A. S. Polubinskii ◽  
V. R. Chernyak
Keyword(s):  

2021 ◽  
Vol 11 (14) ◽  
pp. 6301
Author(s):  
Giulia Grisolia ◽  
Mariarosa Astori ◽  
Antonio Ponzetto ◽  
Antonio Vercesi ◽  
Umberto Lucia

Recently, a non-equilibrium thermodynamic approach has been developed in order to model the fundamental role of the membrane electric potential in the cell behaviour. A related new viewpoint is introduced, with a design of a photobiomodulation treatment in order to restore part of the visual field. Here, a first step in experimental evidence of the validity of the thermodynamic approach is developed. This result represents the starting point for future experimental improvements for light stimulation in order to improve the quality of life of the patients. The future possible therapy will be in addition to the pharmacological treatments.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements


2020 ◽  
Vol 1683 ◽  
pp. 022073
Author(s):  
V I Khvesyuk ◽  
A A Barinov ◽  
B Liu ◽  
W Qiao
Keyword(s):  

2021 ◽  
Vol 2 (3) ◽  
pp. 1-21
Author(s):  
Deke Guo ◽  
Xiaoqiang Teng ◽  
Yulan Guo ◽  
Xiaolei Zhou ◽  
Zhong Liu

Due to the rapid development of indoor location-based services, automatically deriving an indoor semantic floorplan becomes a highly promising technique for ubiquitous applications. To make an indoor semantic floorplan fully practical, it is essential to handle the dynamics of semantic information. Despite several methods proposed for automatic construction and semantic labeling of indoor floorplans, this problem has not been well studied and remains open. In this article, we present a system called SiFi to provide accurate and automatic self-updating service. It updates semantics with instant videos acquired by mobile devices in indoor scenes. First, a crowdsourced-based task model is designed to attract users to contribute semantic-rich videos. Second, we use the maximum likelihood estimation method to solve the text inferring problem as the sequential relationship of texts provides additional geometrical constraints. Finally, we formulate the semantic update as an inference problem to accurately label semantics at correct locations on the indoor floorplans. Extensive experiments have been conducted across 9 weeks in a shopping mall with more than 250 stores. Experimental results show that SiFi achieves 84.5% accuracy of semantic update.


Sign in / Sign up

Export Citation Format

Share Document