Sliding mode control: Diesel engine fault-accommodation subject to parametric uncertainties and actuator faults

Author(s):  
Bada Ndoye ◽  
Sofiane Ahmed Ali ◽  
Nicolas Langlois ◽  
Mohamed Guermouche
Author(s):  
Zian Cheng ◽  
Fuyang Chen ◽  
Juan Niu

In this study, a quasi-continuous high-order sliding mode control approach is presented for the longitudinal model of a generic hypersonic flight vehicle with parametric uncertainties and actuator faults. The quasi-continuous high-order sliding mode controller is designed to track the responses of the normal system to guarantee the velocity and altitude track the reference trajectories rapidly. An improved measure by increasing the relative degree of the quasi-continuous high-order sliding mode is introduced to eliminate the effects on outputs caused by chattering and parametric uncertainties. In view of actuator coupling, an equivalent canonical model is formulated through feedback linearization to accelerate the faults estimation for the actuator faults system. A neural network observer is then utilized to online estimate the unknown faults. This observer can be applied to highly nonlinear system without any prior knowledge of system dynamics as it uses a nonlinear-in-parameters neural network. Meanwhile, the stability and convergence of the faults system is proved theoretically. Simulation results are presented to testify the effectiveness and robustness of the proposed control scheme.


2017 ◽  
Vol 40 (7) ◽  
pp. 2227-2239 ◽  
Author(s):  
Haoping Wang ◽  
Qiankun Qu ◽  
Yang Tian

In this paper, a nonlinear observer based sliding mode control (NOSMC) approach for air-path and a model-based observer for oxygen concentration in the diesel engine equipped with a variable geometry turbocharger and exhaust gas recirculation is introduced. We propose a less conservative observer design technique for Lipschitz nonlinear systems using Ricatti equations. The observer gains are obtained by solving the linear matrix inequality (LMI). Then a robust nonlinear control method, sliding mode control is applied for the states of intake and exhaust manifold pressure and compressor mass flow rate for the sake of the minimization of emissions. The proposed NOSMC controller is applied on a mean value model of turbocharged diesel engine. Besides this, a model-based observer is developed to estimate the oxygen concentration in the intake and exhaust manifolds owing to its significance in reducing emissions of diesel engines. The validation and efficiency of the proposed method are demonstrated by AMESim and Matlab/Simulink co-simulation results.


Author(s):  
Jinwei Sun ◽  
JingYu Cong ◽  
Liang Gu ◽  
Mingming Dong

As the possibility of faults in active suspension actuators are higher and more severe compared to other components, this study presents a fault-tolerant control approach based on the second-order sliding mode control method. The aim of the controller is to improve riding comfort, guarantee handling stability, and provide adequate suspension stroke in the presence of disturbances and actuator faults. A nonlinear full-vehicle suspension system and hydraulic actuator with nonlinear characteristics are adopted for accurate control. Firstly, a nonlinear sliding manifold based on a nonsingular fast terminal sliding mode controller is introduced to suppress the sprung mass heave, pitch, and roll motions arising from road disturbances. Secondly, a second-order sliding mode-based super twisting controller is utilized to track the desired forces generated by the nonsingular fast terminal sliding mode controller with actuator faults and uncertainties. The controllers are robust against disturbances, uncertainties, and faults. Moreover, the stability of the super twisting controller is proved by the strong Lyapunov functions. Finally, numerical simulations are performed to demonstrate the effectiveness of the controller. Four different conditions, random road profile, bump road excitation, single-wheel bump excitation, and partial faults are considered. The main contributions of this study are: (1) combination of the above algorithms to deal with actuator faults and improve active suspension performance; (2) the controller proposed in this study has a simple structure. Simulation results indicate that the nonsingular fast terminal sliding mode super twisting controller can guarantee the performance of the closed-loop system under both faulty and healthy conditions.


Sign in / Sign up

Export Citation Format

Share Document