Machine Learning Based Early Detection System of Cardiac Arrest

Author(s):  
Ji-Han Liu ◽  
Hsiao-Ko Chang ◽  
Cheng-Tse Wu ◽  
Wee Shin Lim ◽  
Hui-Chih Wang ◽  
...  
2020 ◽  
Vol 10 (8) ◽  
pp. 2890
Author(s):  
Jongseong Gwak ◽  
Akinari Hirao ◽  
Motoki Shino

Drowsy driving is one of the main causes of traffic accidents. To reduce such accidents, early detection of drowsy driving is needed. In previous studies, it was shown that driver drowsiness affected driving performance, behavioral indices, and physiological indices. The purpose of this study is to investigate the feasibility of classification of the alert states of drivers, particularly the slightly drowsy state, based on hybrid sensing of vehicle-based, behavioral, and physiological indicators with consideration for the implementation of these identifications into a detection system. First, we measured the drowsiness level, driving performance, physiological signals (from electroencephalogram and electrocardiogram results), and behavioral indices of a driver using a driving simulator and driver monitoring system. Next, driver alert and drowsy states were identified by machine learning algorithms, and a dataset was constructed from the extracted indices over a period of 10 s. Finally, ensemble algorithms were used for classification. The results showed that the ensemble algorithm can obtain 82.4% classification accuracy using hybrid methods to identify the alert and slightly drowsy states, and 95.4% accuracy classifying the alert and moderately drowsy states. Additionally, the results show that the random forest algorithm can obtain 78.7% accuracy when classifying the alert vs. slightly drowsy states if physiological indicators are excluded and can obtain 89.8% accuracy when classifying the alert vs. moderately drowsy states. These results represent the feasibility of highly accurate early detection of driver drowsiness and the feasibility of implementing a driver drowsiness detection system based on hybrid sensing using non-contact sensors.


Author(s):  
Ali Mansour ◽  
Jordan D. Fuhrman ◽  
Faten El Ammar ◽  
Andrea Loggini ◽  
Jared Davis ◽  
...  

Author(s):  
S. W. Kwon ◽  
I. S. Song ◽  
S. W. Lee ◽  
J. S. Lee ◽  
J. H. Kim ◽  
...  

2020 ◽  
Author(s):  
Francisco Diego Rabelo-da-Ponte ◽  
Jacson Gabriel Feiten ◽  
Benson Mwangi ◽  
Fernando C. Barros ◽  
Fernando C. Wehrmeister ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 343-384 ◽  
Author(s):  
Gamal Eldin I. Selim ◽  
EZZ El-Din Hemdan ◽  
Ahmed M. Shehata ◽  
Nawal A. El-Fishawy

Sign in / Sign up

Export Citation Format

Share Document