Design of an IoT-based Flood Early Detection System using Machine Learning

Author(s):  
Fatereh Sadat Mousavi ◽  
Saleh Yousefi ◽  
Hirad Abghari ◽  
Ardalan Ghasemzadeh
2020 ◽  
Vol 10 (8) ◽  
pp. 2890
Author(s):  
Jongseong Gwak ◽  
Akinari Hirao ◽  
Motoki Shino

Drowsy driving is one of the main causes of traffic accidents. To reduce such accidents, early detection of drowsy driving is needed. In previous studies, it was shown that driver drowsiness affected driving performance, behavioral indices, and physiological indices. The purpose of this study is to investigate the feasibility of classification of the alert states of drivers, particularly the slightly drowsy state, based on hybrid sensing of vehicle-based, behavioral, and physiological indicators with consideration for the implementation of these identifications into a detection system. First, we measured the drowsiness level, driving performance, physiological signals (from electroencephalogram and electrocardiogram results), and behavioral indices of a driver using a driving simulator and driver monitoring system. Next, driver alert and drowsy states were identified by machine learning algorithms, and a dataset was constructed from the extracted indices over a period of 10 s. Finally, ensemble algorithms were used for classification. The results showed that the ensemble algorithm can obtain 82.4% classification accuracy using hybrid methods to identify the alert and slightly drowsy states, and 95.4% accuracy classifying the alert and moderately drowsy states. Additionally, the results show that the random forest algorithm can obtain 78.7% accuracy when classifying the alert vs. slightly drowsy states if physiological indicators are excluded and can obtain 89.8% accuracy when classifying the alert vs. moderately drowsy states. These results represent the feasibility of highly accurate early detection of driver drowsiness and the feasibility of implementing a driver drowsiness detection system based on hybrid sensing using non-contact sensors.


Author(s):  
S. W. Kwon ◽  
I. S. Song ◽  
S. W. Lee ◽  
J. S. Lee ◽  
J. H. Kim ◽  
...  

2020 ◽  
Author(s):  
Francisco Diego Rabelo-da-Ponte ◽  
Jacson Gabriel Feiten ◽  
Benson Mwangi ◽  
Fernando C. Barros ◽  
Fernando C. Wehrmeister ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 343-384 ◽  
Author(s):  
Gamal Eldin I. Selim ◽  
EZZ El-Din Hemdan ◽  
Ahmed M. Shehata ◽  
Nawal A. El-Fishawy

Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


Sign in / Sign up

Export Citation Format

Share Document