Stimulus Sampling with 360-Videos: Examining Head Movements, Arousal, Presence, Simulator Sickness, and Preference on a Large Sample of Participants and Videos

Author(s):  
Hanseul Jun ◽  
Mark Roman Miller ◽  
Fernanda Herrera ◽  
Byron Reeves ◽  
Jeremy N Bailenson
2010 ◽  
Vol 81 (10) ◽  
pp. 929-934 ◽  
Author(s):  
Alexander D. Walker ◽  
Eric R. Muth ◽  
Fred S. Switzer ◽  
Adam Hoover

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259977
Author(s):  
Kenan Bektaş ◽  
Tyler Thrash ◽  
Mark A. van Raai ◽  
Patrik Künzler ◽  
Richard Hahnloser

Embodied interfaces are promising for virtual reality (VR) because they can improve immersion and reduce simulator sickness compared to more traditional handheld interfaces (e.g., gamepads). We present a novel embodied interface called the Limbic Chair. The chair is composed of two separate shells that allow the user’s legs to move independently while sitting. We demonstrate the suitability of the Limbic Chair in two VR scenarios: city navigation and flight simulation. We compare the Limbic Chair to a gamepad using performance measures (i.e., time and accuracy), head movements, body sway, and standard questionnaires for measuring presence, usability, workload, and simulator sickness. In the city navigation scenario, the gamepad was associated with better presence, usability, and workload scores. In the flight simulation scenario, the chair was associated with less body sway (i.e., less simulator sickness) and fewer head movements but also slower performance and higher workload. In all other comparisons, the Limbic Chair and gamepad were similar, showing the promise of the Chair for replacing some control functions traditionally executed using handheld devices.


1999 ◽  
Vol 58 (3) ◽  
pp. 170-179 ◽  
Author(s):  
Barbara S. Muller ◽  
Pierre Bovet

Twelve blindfolded subjects localized two different pure tones, randomly played by eight sound sources in the horizontal plane. Either subjects could get information supplied by their pinnae (external ear) and their head movements or not. We found that pinnae, as well as head movements, had a marked influence on auditory localization performance with this type of sound. Effects of pinnae and head movements seemed to be additive; the absence of one or the other factor provoked the same loss of localization accuracy and even much the same error pattern. Head movement analysis showed that subjects turn their face towards the emitting sound source, except for sources exactly in the front or exactly in the rear, which are identified by turning the head to both sides. The head movement amplitude increased smoothly as the sound source moved from the anterior to the posterior quadrant.


2006 ◽  
Author(s):  
Marcel Delahaye ◽  
Oliver Stefani ◽  
Alex Bullinger
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document