scholarly journals Application of Cross-Correlation Greens Function Along With FDTD for Fast Computation of Envelope Correlation Coefficient Over Wideband for MIMO Antennas

2017 ◽  
Vol 65 (2) ◽  
pp. 730-740 ◽  
Author(s):  
Debdeep Sarkar ◽  
Kumar Vaibhav Srivastava
2020 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 1093
Author(s):  
Ayman mohammed Ibrahim

 In this paper, two elements of the multi-input multi-output (MIMO) antenna had been used to study the five (3.1-3.55GHz and 3.7-4.2GHz), (3.4-4.7 GHz), (3.4-3.8GHz) and (3.6-4.2GHz) 5G bands of smartphone applications that is to be introduced to the respective US, Korea, (Europe and China) and Japan markets. With a proposed dimension of 26 × 46 × 0.8 mm3, the medium-structured and small-sized MIMO antenna was not only found to have demonstrated a high degree of isolation and efficiency, it had also exhibited a lower level of envelope correlation coefficient and return loss, which are well-suited for the 5G bands application. From the fabrication of an inexpensive FR4 substrate with a 0.8 mm thickness level, a loss tangent of 0.035 and a dielectric constant of 4.3, the proposed MIMO antennas that had been simulated under the five different band coverage were discovered to have demonstrated a respective isolation level of about 14dB, 12dB, 21.5dB, 19dB and 20dB under a -10dB impendence bandwidth. In the measurement and fabrication outcomes that were derived from the use of the prototype MIMO in the (3.4-3.8) band of the Europe and Chinese markets, the proposed MIMO was thus found to have produced a better performance in terms of efficiency, isolation, and envelope correlation coefficient (ECC).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Andrea de Almeida Brito ◽  
Heráclio Alves de Araújo ◽  
Gilney Figueira Zebende

AbstractDue to the importance of generating energy sustainably, with the Sun being a large solar power plant for the Earth, we study the cross-correlations between the main meteorological variables (global solar radiation, air temperature, and relative air humidity) from a global cross-correlation perspective to efficiently capture solar energy. This is done initially between pairs of these variables, with the Detrended Cross-Correlation Coefficient, ρDCCA, and subsequently with the recently developed Multiple Detrended Cross-Correlation Coefficient, $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2. We use the hourly data from three meteorological stations of the Brazilian Institute of Meteorology located in the state of Bahia (Brazil). Initially, with the original data, we set up a color map for each variable to show the time dynamics. After, ρDCCA was calculated, thus obtaining a positive value between the global solar radiation and air temperature, and a negative value between the global solar radiation and air relative humidity, for all time scales. Finally, for the first time, was applied $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}$$DMCx2 to analyze cross-correlations between three meteorological variables at the same time. On taking the global radiation as the dependent variable, and assuming that $${\boldsymbol{DM}}{{\boldsymbol{C}}}_{{\bf{x}}}^{{\bf{2}}}={\bf{1}}$$DMCx2=1 (which varies from 0 to 1) is the ideal value for the capture of solar energy, our analysis finds some patterns (differences) involving these meteorological stations with a high intensity of annual solar radiation.


2014 ◽  
Vol 29 (01) ◽  
pp. 1450236 ◽  
Author(s):  
Guangxi Cao ◽  
Yan Han

Recent studies confirm that weather affects the Chinese stock markets, based on a linear model. This paper revisits this topic using DCCA cross-correlation coefficient (ρ DCCA (n)), which is a nonlinear method, to determine if weather variables (i.e., temperature, humidity, wind and sunshine duration) affect the returns/volatilities of the Shanghai and Shenzhen stock markets. We propose an asymmetric ρ DCCA (n) by improving the traditional ρ DCCA (n) to determine if different cross-correlated properties exist when one time series trending is either positive or negative. Further, we improve a statistical test for the asymmetric ρ DCCA (n). We find that cross-correlation exists between weather variables and the stock markets on certain time scales and that the cross-correlation is asymmetric. We also analyze the cross-correlation at different intervals; that is, the relationship between weather variables and the stock markets at different intervals is not always the same as the relationship on the whole.


Sign in / Sign up

Export Citation Format

Share Document