scholarly journals Wideband Dual-Polarized Multiple Beam-Forming Antenna Arrays

2019 ◽  
Vol 67 (3) ◽  
pp. 1590-1604 ◽  
Author(s):  
He Zhu ◽  
Haihan Sun ◽  
Bevan Jones ◽  
Can Ding ◽  
Y. Jay Guo
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Nelson Jorge G. Fonseca

The Lorentz reciprocity theorem enables us to establish that the transmitting and receiving patterns of any antenna are identical, provided some hypotheses on this antenna and the surrounding medium are satisfied. But reciprocity does not mean that the antenna behaves the same in the transmitting and the receiving modes. In this paper, array antennas fed by multiple beam forming networks are discussed, highlighting the possibility to have different values of internal losses in the beam forming network depending on the operation mode. In particular, a mathematical condition is derived for the specific case of a multiple beam forming network with lossless transmitting mode and lossy receiving mode, such a behavior being fully consistent with the reciprocity theorem. A theoretical discussion is provided, starting from a simple 2-element array to a generalM×Nmultiple beam forming network. A more practical example is then given, discussing a specific4×8Nolen matrix design and comparing theoretical aspects with simulation results.


2016 ◽  
Vol 8 (6) ◽  
pp. 963-972 ◽  
Author(s):  
Benjamin Rohrdantz ◽  
Thomas Jaschke ◽  
Frauke K. H. Gellersen ◽  
Anton Sieganschin ◽  
Arne F. Jacob

In this contribution a dual-band, dual-polarized microstrip antenna element for array applications is presented. The patch antenna is designed to operate simultaneously at around 30 and 20 GHz, the up- and downlink frequencies of modern Ka-band satellite communication systems. The antenna is smaller than half the freespace wavelength at 30 GHz to enable its utilization as array element of dual-band ground terminals. Integrating transmitter and receiver circuits allows, in turn, for a very compact active terminal solution. To minimize production cost, the design is carried out in standard multilayer printed circuit board technology. The antenna features two distinct polarization ports suitable for either dual linear or dual circular polarization if both ports are excited in quadrature. The single antenna design process is described in detail and simulation and measurement results are presented. Finally, different arrays based on this patch antenna are evaluated by simulation and measurements.


Sign in / Sign up

Export Citation Format

Share Document