A Wideband Low-Profile Microstrip MIMO Antenna for 5G Mobile Phones

Author(s):  
Bo Cheng ◽  
Zhengwei Du
2018 ◽  
Vol 33 (4) ◽  
pp. 474-492 ◽  
Author(s):  
Shu-Chuan Chen ◽  
Wun-Siang Cai ◽  
Chung-I G. Hsu ◽  
Meng-Kai Wu

2021 ◽  
Vol 98 ◽  
pp. 145-153
Author(s):  
Harri Varheenmaa ◽  
Rasmus Luomaniemi ◽  
Anu Lehtovuori ◽  
Pasi Yla-Oijala ◽  
Ville Viikari

2019 ◽  
Vol 23 (1) ◽  
pp. 11
Author(s):  
Sanjay Chouhan ◽  
Leeladhar Malviya

Compact antenna, appropriate gain, high efficiency, wide bandwidth, minimum envelope correlation coefficient (ECC), large total active reflection coefficient (TARC) bandwidth, and low specific absorption rate (SAR) are certain conditions set on the present/future generations of wireless communication antennas with the lowest cost of implementation. A compact low profile folded MIMO antenna has been designed using CST tool to cover application at 5.2 GHz. The reported folded MIMO antenna has bandwidth of 600 MHz (5.0-5.6 GHz) and has fractional bandwidth of 11.32 % along with the compact size of 37.5 × 17.0 mm2 . The reported MIMO antenna has ECC of < 10-2. The proposed folded MIMO antenna resonates at 5.2 GHz and has return loss of -44.0 dB. The inter-port isolation in antenna ports is > 11.50 dB in the defined frequency band. The response of TARC shows > 580 MHz of bandwidth with pair of excitation angles at antenna ports. The gain of antenna is > 3.0 dBi in the operating band. The reported radiating geometry makes the design very compact. To check the radiation effect on human body in different positions, the SAR is evaluated for indoor environment.


2020 ◽  
Vol 9 (2) ◽  
pp. 42-51
Author(s):  
C.-H. Tsai ◽  
J.-S. Sun ◽  
S.-J. Chung ◽  
J.-H. Tarng

In this paper, a new low-profile smart multiple-input multiple-output (MIMO) antenna system is presented for WiFi IEEE 802.11a/b/g/n/ac/ax applications. The proposed compact 2.4-GHz antenna system employs two beam-switching antenna cells for MIMO operation. Each antenna cell is composed of four reconfigurable frequency-selective reflectors (RFSRs) and a one-to-four switching feeding network. The RFSRs are constructed using a one-wavelength metal loop resonator, which functions as a radiating antenna or a wave reflector to reflect beams along a specific direction, as controlled by the switching network. The feeding switching network utilizes PIN diodes to adjust the phase and impedance required for changing the operational status of each RFSR. The overall dimensions of the antenna system, including the metallic ground, are 120 mm ´ 120 mm ´ 9.5 mm. Moreover, the measured operational bandwidth of the 2.4-GHz antenna is approximately 100 MHz, and the radiation efficiency of each directed beam is 40%–70%.


Sign in / Sign up

Export Citation Format

Share Document