scholarly journals High Spatial Resolution Neutron Transmission Imaging Using a Superconducting Two-Dimensional Detector

Author(s):  
Hiroaki Shishido ◽  
Kazuma Nishimura ◽  
The Dang Vu ◽  
Kazuya Aizawa ◽  
Kenji M Kojima ◽  
...  
2014 ◽  
Vol 41 (6Part32) ◽  
pp. 549-550
Author(s):  
H Li ◽  
J Driewer ◽  
Z Han ◽  
D Low ◽  
D Yang ◽  
...  

2013 ◽  
Vol 760-762 ◽  
pp. 1524-1528 ◽  
Author(s):  
Ya Feng Zhang ◽  
Jian Guo Wen ◽  
Jun Ling Zhu ◽  
Jian Lin Yu

Data fusion technique can produce fused images with high spatial resolution and abundant spectral information. A new image fusion algorithm based on two-dimension PCA and Curvelet transform will be proposed according to image process models specialities in this paper. First of all, we performed 2DPCA on the MS image to get the 1st principle component (PC1); then we applied Curvelet transform in Pan Image and PC1; lastly decomposition coefficients obtained was processed according to certain rules to get fused coefficients, and afterwards, we performed inverse Curvelet transform on them to acquire fused sub-images. Then we performed inverse 2DPCA transform on the other components and the fused sub-images to get fused images. Experiments will be carried out via application of multispectral and panchromatic images, and it turns out that this new algorithm can improve spatial resolution greatly while maintaining spectral information.


Author(s):  
Kentaro Nagai

This paper presents a novel approach to achieving high spatial resolution in the demodulation of images produced by a two-dimensional X-ray Talbot interferometry (XTI) system. Currently, demodulation of XTI images is mainly performed by either phase-stepping (PS) or Fourier transform (FT) methods. However, the PS method for two-dimensional XTI demodulation requires a larger number of exposures and a more complex grating control process than that of one-dimensional XTI. On the other hand, although the FT method uses only a single-fringe image, it gives lower spatial resolution than the PS method. For practical application of two-dimensional XTI, a simpler exposure process with high spatial resolution is required. In this paper, we introduce a hybrid method combining the PS and FT methods. This method simplifies the exposure process in comparison with the PS method required in two-dimensional XTI while achieving higher spatial resolution than the FT method in the demodulation of images. The method works by using additional exposures to eliminate unnecessary spectral components that appear in the FT method. Furthermore, the proposed method is demonstrated by using actual two-dimensional XTI data and shown to achieve high spatial resolution in the demodulation of images for both the x - and y -differential phase components.


Sign in / Sign up

Export Citation Format

Share Document