An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication

2017 ◽  
Vol 11 (4) ◽  
pp. 910-919 ◽  
Author(s):  
Jingna Mao ◽  
Huazhong Yang ◽  
Bo Zhao
2015 ◽  
Vol 20 (3) ◽  
pp. 1440-1447 ◽  
Author(s):  
Rumei Zhang ◽  
Hao Liu ◽  
Qi Shao ◽  
Guiyang Li ◽  
Xuelin Fang ◽  
...  

2018 ◽  
Vol 8 (9) ◽  
pp. 1539 ◽  
Author(s):  
Kentaro Yamamoto ◽  
Yoshifumi Nishida ◽  
Ken Sasaki ◽  
Dairoku Muramatsu ◽  
Fukuro Koshiji

Human body communication (HBC) is a wireless communication method that uses the human body as part of the transmission medium. Electrodes are used instead of antennas, and the signal is transmitted by the electric current through the human body and by the capacitive coupling outside the human body. In this study, direction of electric field lines and direction of electric current through the human body were analyzed by the finite-difference time-domain method to clarify the signal path, which is not readily apparent from electric field strength distribution. Signal transmission from a transmitter on the subject’s wrist to an off-body receiver touched by the subject was analyzed for two types of transmitter electrode settings. When both the signal and ground electrodes were put in contact with the human body, the major return path consisted of capacitive coupling between the receiver ground and the human body, and the electric current through the human body that flowed back to the ground electrode of the transmitter. When the ground electrode was floating, the only return path was through the capacitive coupling of the floating ground. These results contribute to the better understanding of signal transmission mechanism of HBC and will be useful for developing HBC applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


Sign in / Sign up

Export Citation Format

Share Document