scholarly journals Inter-body coupling in electro-quasistatic human body communication: theory and analysis of security and interference properties

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.

2020 ◽  
Author(s):  
Mayukh Nath ◽  
Alfred Krister Ulvog ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractWith the advent of wearable technologies, Human Body Communication (HBC) has emerged as a physically secure and power-efficient alternative to the otherwise ubiquitous Wireless Body Area Network (WBAN). Whereas the most investigated nodes of HBC have been Electric and Electro-quasistatic (EQS) Capacitive and Galvanic, recently Magnetic HBC (M-HBC) has been proposed as a viable alternative. Previous works have investigated M-HBC through an application point of view, without developing a fundamental working principle for the same. In this paper, for the first time, a ground up analysis has been performed to study the possible effects and contributions of the human body channel in M-HBC over a broad frequency range (1kHz to 10 GHz), by detailed electromagnetic simulations and supporting experiments. The results show that while M-HBC can be successfully operated as a body area network, the human body itself plays a minimal or negligible role in it’s functionality. For frequencies less than ∼30 Hz, in the domain of operation of Magneto-quasistatic (MQS) HBC, the human body is transparent to the quasistatic magnetic field. Conversely for higher frequencies, the conductive nature of human tissues end up attenuating Magnetic HBC fields due to Eddy currents induced in body tissues, eliminating the possibility of the body to support efficient waveguide modes. With this better understanding at hand, different modes of operations of MQS HBC have been outlined for both high impedance capacitive and 50Ω termination cases, and their performances have been compared with EQS HBC for similar sized devices, over varying distance between TX and RX. The resulting report presents the first fundamental understanding towards M-HBC operation and its contrast with EQS HBC, aiding HBC device designers to make educated design decisions, depending on mode of applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Jian Feng Zhao ◽  
Xi Mei Chen ◽  
Bo Dong Liang ◽  
Qiu Xia Chen

Human body communication (HBC), which uses the human body tissue as the transmission medium to transmit health informatics, serves as a promising physical layer solution for the body area network (BAN). The human centric nature of HBC offers an innovative method to transfer the healthcare data, whose transmission requires low interference and reliable data link. Therefore, the deployment of HBC system obtaining good communication performance is required. In this regard, a tutorial review on the important issues related to HBC data transmission such as signal propagation model, channel characteristics, communication performance, and experimental considerations is conducted. In this work, the development of HBC and its first attempts are firstly reviewed. Then a survey on the signal propagation models is introduced. Based on these models, the channel characteristics are summarized; the communication performance and selection of transmission parameters are also investigated. Moreover, the experimental issues, such as electrodes and grounding strategies, are also discussed. Finally, the recommended future studies are provided.


Wireless Body Area Network (WBAN) is a collection of miniaturized sensing nodes and coordinator nodes. These sensing nodes are placed in, on and around the body for uninterrupted monitoring of physiological data for medical applications. The main application carrier of WBAN is the human body and due to human body movement and physiological changes, the WBAN traffic fluctuates greatly. This network traffic fluctuation requires good network adaptability. In addition to traffic fluctuations, energy consumption is another key problem with WBANs as sensing nodes are very small in size. This paper design a reliable protocol by extending the MAC protocol for reducing energy consumption, PAP algorithm to decide data transmission rate and JOAR algorithm to select the optimize path for the data transmission. The performance of the algorithm outperforms other state of art algorithms to shows its significance.


Author(s):  
Ramanpreet Kaur ◽  
Ruchi Pasricha ◽  
Bikrampal Kaur

Background: The increased cost of treatments in the health care industry and advancements in technologies have led to a promising area of development in Wireless Sensor Networks and semiconductor technologies. Wireless Body Area Networks is a subset of WSN in which sensor nodes are placed on the human body or implanted inside the body to determine various physical parameters of the human body. This information is forwarded to the medical centers or central servers through gateways. The direct advantage of this technology is the existence of portable health monitoring applications as well as location independent monitoring applications. But, still, the existence of smart hospitals needs a lot of focused research related to practical problems faced by patients as well as practitioners. Introduction: The aim of this paper is to present an essential depiction of WBAN development in both medical and non- medical applications. The important features of various wireless technologies supported by WBAN have also been presented. It is apparent that to determine the overall performance of a network in terms of different parameters like temperature, power consumption, throughput and delay, etc., a significant role is played by the routing protocols. Since WBAN directly deals with the human body and hence implementation of a new protocol is a challenging task before researchers, this paper reviews each category of routing protocols and their corresponding limitations. A comparison among routing protocols will guide researchers in implementing a specific protocol for targeted application. The paper also focuses on the future of WBAN which will provide the research areas for further exploration. Conclusion: It is found that QoS aware protocols are employed specifically for critical applications. If we consider radiation imparted from the sensors and tissue protection of the human body, the thermal aware routing protocol is the solution. Another important conclusion of this paper is that the various protocols do not provide an optimal solution for selecting the forward node during routing and this solution primarily depends on the residual energy of the nodes and distance of the node from the sink. A study of protocols developed from 2004 onwards till date shows that implementation of WBAN using integration of IoT, EoT, and fog computing has been the emerging topic of research in recent years.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinesh Kumar Anguraj ◽  
Abul Bashar ◽  
R. Nidhya ◽  
P.K. Shimna ◽  
Renjith V. Ravi

PurposeThe purpose of this paper is energy consumption and security. To extend the sensor’s life span, saving the energy in a sensor is important. In this paper, biosensors are implanted or suited on the human body, and then, transposition has been applied for biosensors for reducing the sensor distance from the sink node. After transposition path loss has been calculated, security is maintained and also compared the results with the existing strategies.Design/methodology/approachNowadays, one of the most emergent technologies is wireless body area network (WBAN), which represents to improve the quality of life and also allow for monitoring the remote patient and other health-care applications. Traffic routing plays a main role together with the relay nodes, which is used to collect the biosensor’s information and send it towards the sink.FindingsTo calculate the distance and observe the position, Euclidean distance technique is used. Path loss is the main parameter, which is needed to reduce for making better data transmission and to make the network stability. Routing protocols can be designed, with the help of proposed values of sensors locations in the human body, which gives good stability of network and lifetime. It helps to achieve as the less deplete energy.Originality/valueThis scheme is compared with the two existing schemes and shows the result in terms of parameter path loss. Moreover, this paper evaluated a new method for improving the security in WBAN. The main goal of this research is to find the optimal sensor location on the body and select the biosensor positions where they can get less energy while transmitting the data to the sink node, increasing the life span in biosensors, decreasing memory space, giving security, controlling the packet complexity and buffer overflow and also fixing the damages in the existing system.


2020 ◽  
Author(s):  
Nirmoy Modak ◽  
Mayukh Nath ◽  
Baibhab Chatterjee ◽  
Shovan Maity ◽  
Shreyas Sen

AbstractHuman Body Communication (HBC) is an alternative to radio wave-based Wireless Body Area Network (WBAN) because of its low-loss, wide bandwidth leading to enhanced energy efficiency. HBC also shows better performance in terms of physical security as most of the signal is confined within the body. To obtain optimum performance and usability, modeling of the body channel plays a vital role. Out of two HBC modalities, Galvanic HBC has the promise to provide lower loss compare to Capacitive HBC for shorter channel length. In this paper, we present the first lumped element based detailed model of Galvanic HBC channel which is used to explain the dependency of channel loss on the material property of skin, fat and muscle tissue layer along with electrode size, electrode separation, geometrical position of the electrodes and return path capacitance. The model considers the impedance of skin and muscle tissue layers and the effect of various coupling capacitances between the body and Tx/Rx electrodes to the Earth-ground. A 2D planner structure is simulated in HFSS to prove the validity of the proposed model. The effect of symmetry and asymmetry at the transmitter and receiver end are also explained using the model. The experimental results show that, due to the mismatch at the transmitter and receiver side, the loss increases gradually with channel length and saturates to a finite value as channel length becomes significantly longer compare to the transmitting or receiving electrode pair separation.


Author(s):  
M. Javed

A daunting task in Wireless Body Area Networks (WBANs) is still to develop Effective routing techniques. Small-sized nodes are installed on or within the human body to monitor human health conditions which then deliver the data to servers for analysis. During sensing and data transfer, biomedical sensors work continuously and the temperature of the nodes may rise beyond the threshold limit. This temperature rise may damage the human body tissues as well as the routing mechanism in terms of path losses. To keep the temperature at its normal working value, a priority-based selection of routes is required to prevent data loss during transmission. This will ensure safe and accurate data delivery at the destination. A protocol called “Thermal Aware Link Energy Efficient Scheme for WBANs” (TALEEBA) for workers is proposed to monitor the health of workers in factories. One of the four sinks will collect the data of the nearest worker in the field. As the body temperature of any worker is detected to rise, an alarm will be generated and the supervisor of the workplace will ask the worker to be replaced by some other worker. The same mechanism will continue till the task ends. Our proposed TALEEBA (Thermal Aware Link Energy Efficient Scheme for WBANs) scheme is aligned with current LAEEBA and THE-FAME WBAN schemes. In simulations, we analyze our protocol in terms of stability period, network lifetime, residual energy, a packet sent, packet dropped, and throughput. Hence, the results show stability and network life 50%, a packet sent 20% and throughput 23% are improved in comparison with LABEEA and THE-FAME protocols.


Author(s):  
Achmad Mauludiyanto ◽  
Gamantyo Hendrantoro ◽  
Muhammad Fachry Nova

The Wireless Body Area Network (WBAN) refers to a communication network between sensors placed on the inside, on the surface, or around the body wirelessly. WBAN system cannot be separated from body tissues. Body tissues also have electrical properties depending on frequency. Therefore, body tissue can affect the phenomena occurring in radio wave propagation in the WBAN channel. One of the phenomena is attenuation. This study investigates the impacts of body tissue on the WBAN channel and the effects of frequency on the attenuation of body tissue in the WBAN channel. The measurement of magnitude response was carried out with the human body as the measurement object by utilizing the S21 parameter measurement with a vector network analyzer. In NLOS conditions, a human body was located between two coplanar Vivaldi antenna. Measurements were conducted on the head, chest, and abdomen. The frequency used was in the range of 2 GHz to 6 GHz. The body tissue attenuation was obtained by finding the difference between the magnitude measurement response on the LOS and NLOS conditions. The attenuation data were analyzed using statistical and numerical analysis to determine the effect of frequency on the attenuation of the human body tissues. Based on the analysis results, it was identified that the frequency affected the human body tissue attenuation. The enhancement attenuation of the human body tissues occurred when the frequency was higher. Moreover, there was a significant difference in the body tissue attenuation in different parts of the body.Keywords: attenuation, body tissues, s-parameters, wireless body area network.


Sign in / Sign up

Export Citation Format

Share Document