Closed-Loop Positioning of Hemiplegic Patient's Joint by Means of Functional Electrical Stimulation

1974 ◽  
Vol BME-21 (5) ◽  
pp. 365-370 ◽  
Author(s):  
Uros Stanic ◽  
Amadej Trnkoczy
2005 ◽  
Vol 17 (01) ◽  
pp. 19-26 ◽  
Author(s):  
CHENG-LIANG LIU ◽  
CHUNG-HUANG YU ◽  
SHIH-CHING CHEN ◽  
CHANG-HUNG CHEN

Functional electrical stimulation (FES) is a method for restoring the functional movements of paraplegic or patients with spinal cord injuries. However, the selection of parameters that control the restoration of standing up and sitting functions has not been extensively investigated. This work provides a method for choosing the four main items involved in evaluating the strategies for sit-stand-sit movements with the aid of a modified walker. The control method uses the arm-supported force and the angles of the legs as feedback signals to change the intensity of the electrical stimulation of the leg muscles. The control parameters, Ki and Kp, are vary for different control strategies. Four items are collected through questionnaires and used for evaluation. They are the maximum reactions of the two hands, the average reaction of the two hands, largest absolute angular velocity of the knee joints, and the sit-stand-sit duration time. The experimental data are normalized to facilitate comparison. Weighting factors are obtained and analyzed from questionnaires answered by experts and are added to evaluation process for manipulation. The results show that the best strategy is the closed-loop control with parameters Ki=0.5 and Kp=0.


Author(s):  
Yuu HASEGAWA ◽  
Tomoya KITAMURA ◽  
Hiroto MIZOGUCHI ◽  
Naoto MIZUKAMI ◽  
Sho SAKAINO ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
John F. Tan ◽  
Kei Masani ◽  
Albert H. Vette ◽  
José Zariffa ◽  
Mark Robinson ◽  
...  

The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject’s ankle joint angle as controlled by the FES system while having the subject’s body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.


2012 ◽  
Vol 02 (03) ◽  
pp. 14-15
Author(s):  
Subramanya K. ◽  
Ajithanjaya Kumar Mijar Kanakabettu

AbstractOne of the most exciting recent advances in the neuroprosthetics field has been the application of biosignals in the design of functional electrical stimulation (FES) devices. An Electromyogram (EMG) measures the electrical activity in muscles and is often considered as ideal candidate biosignal for designing closed-loop controlled FES system. In this brief communication, we propose a novel design paradigm of a synergistic benefit of incorporating two different design principles in development of an EMG controlled FES system that hold promise for the future of rehabilitation of stroke and other neurological disorders. The proposed system will detect the residual EMG signals from the muscle and suitably adjust the stimulation current amplitude and stimulate the paralyzed muscles with a 'natural' EMG pattern envelope. We offer this design as a fruitful area for fuing recent advances in the neuroprosthetics field has been the application of biosignals in the design of functional electrical stimulation (FES) devices. An Electromyogram (EMG) measures the electrical activity in muscles and is often considered as ideal candidate biosignal for designing closed-loop controlled FES system. In this brief communication, we propose a novel design paradigm of a synergistic benefit of incorporating two different design principles in development of an EMG controlled FES system that hold promise for the future of rehabilitation of stroke and other neurological disorders. The proposed system will detect the residual EMG signals from the muscle and suitably adjust the stimulation current amplitude and stimulate the paralyzed muscles with a 'natural' EMG pattern envelope. We offer this design as a fruitful area for future research and clinical application.


Sign in / Sign up

Export Citation Format

Share Document