A Queue Waiting Cost-Aware Control Model for Large Scale Heterogeneous Cloud Datacenter

Author(s):  
Weihua Bai ◽  
Jiaxian Zhu ◽  
Shao-Wei Huang ◽  
Huibing Zhang
2014 ◽  
Vol 986-987 ◽  
pp. 1383-1386
Author(s):  
Zhen Xing Yang ◽  
He Guo ◽  
Yu Long Yu ◽  
Yu Xin Wang

Cloud computing is a new emerging paradigm which delivers an infrastructure, platform and software as services in a pay-as-you-go model. However, with the development of cloud computing, the large-scale data centers consume huge amounts of electrical energy resulting in high operational costs and environment problem. Nevertheless, existing energy-saving algorithms based on live migration don’t consider the migration energy consumption, and most of which are designed for homogeneous cloud environment. In this paper, we take the first step to model energy consumption in heterogeneous cloud environment with migration energy consumption. Based on this energy model, we design energy-saving Best fit decreasing (ESBFD) algorithm and energy-saving first fit decreasing (ESFFD) algorithm. We further provide results of several experiments using traces from PlanetLab in CloudSim. The experiments show that the proposed algorithms can effectively reduce the energy consumption of data center in the heterogeneous cloud environment compared to existing algorithms like NEA, DVFS, ST (Single Threshold) and DT (Double Threshold).


2018 ◽  
Vol 10 (06) ◽  
pp. 1850062 ◽  
Author(s):  
Xiao-Fei Ma ◽  
Tuan-Jie Li ◽  
Zuo-Wei Wang

The space environments and special mission demands require large-scale and high shape accuracy cable net structures. The vibration control is an essential issue for shape control and performance conservation of large flexible cable net structures. This paper investigates the hybrid active wave/mode control of space prestressed taut cable net structures. First, the traveling wave dynamic model of cable net structures is explored by elemental waveguide and propagation equations of cables together with force balance conditions and compatibility conditions of joints. Then, the active wave control model is established by using the assumption forms of wave controllers to adjust the mechanical boundaries of the controlled joints. Finally, the hybrid active wave/mode control model is proposed by constructing the mapping relationship between wave control force, modal damping and natural frequencies. The proposed control method is verified by a planar cable net structure and the results show that the hybrid active wave/mode control can give a better broadband vibration attenuation performance for space prestressed taut cable net structures.


2018 ◽  
Vol 2 (3) ◽  
pp. 15 ◽  
Author(s):  
Maarten Kollenstart ◽  
Edwin Harmsma ◽  
Erik Langius ◽  
Vasilios Andrikopoulos ◽  
Alexander Lazovik

Efficient utilization of resources plays an important role in the performance of large scale task processing. In cases where heterogeneous types of resources are used within the same application, it is hard to achieve good utilization of all of the different types of resources. By taking advantage of recent developments in cloud infrastructure that enable the use of dynamic clusters of resources, and by dynamically altering the size of the available resources for all the different resource types, the overall utilization of resources, however, can be improved. Starting from this premise, this paper discusses a solution that aims to provide a generic algorithm to estimate the desired ratios of instance processing tasks as well as ratios of the resources that are used by these instances, without the necessity for trial runs or a priori knowledge of the execution steps. These ratios are then used as part of an adaptive system that is able to reconfigure itself to maximize utilization. To verify the solution, a reference framework which adaptively manages clusters of functionally different VMs to host a calculation scenario is implemented. Experiments are conducted based on a compute-heavy use case in which the probability of underground pipeline failures is determined based on the settlement of soils. These experiments show that the solution is capable of eliminating large amounts of under-utilization, resulting in increased throughput and lower lead times.


2014 ◽  
Vol 521 ◽  
pp. 151-156
Author(s):  
Sheng Wei Tang ◽  
Yi Tan ◽  
Juan Liu ◽  
Jian Wei Sun

The fluctuation is an important factor that limits large-scale integration of wind power into power grid. In order to improve penetration level of wind power, the EVs based on V2G are considered to participate in regulating wind power while considering charge-discharge characteristics of EV battery. Thus, in this paper, an optimized EV charge-discharge control model is proposed to reduce output fluctuation of wind power. The Monte-Carlo method is used to simulate the stochastic wind speed based on Weibull probability density function. Finally, Genetic Algorithm (GA) is adopted to solve the problem. Results indicate that the EVs based on V2G can reduce the wind power fluctuation level to some extent, absorbing the wind power surplus and compensating the of wind power shortage.


2020 ◽  
Vol 17 (9) ◽  
pp. 4156-4161
Author(s):  
Jeny Varghese ◽  
S. Jagannatha

Cloud Federation is the interconnection of two or more cloud computing settings in order to share configurable processing components such as networks, servers, apps that can be dynamically delivered to customers. Virtualization has been an integral part of cloud computing which provides manageability and utilization of resources. This paper analyses on how jobs of business applications demand and efficiently use the capacity of the resources that are provisioned by the VMs, thereby managing the performance of the applications. The in-depth assessment is based on two large-scale and constant performance traces gathered in a cloud datacenter that host company tools for running distinct apps with regard to requested and used resources.


2012 ◽  
Vol 263-266 ◽  
pp. 1600-1604
Author(s):  
Qiang Liu ◽  
Jian Hua Zhang

Role-Based Access Control (RBAC) model is the main-stream access control model. When addressing large-scale and distributed application, the highest Security Administrator(SA) of RBAC model always try to transfer his management authority to his inferior SAs to decrease his workload. However, How to ensure that these inferior SAs perform their management authorities legally is a big problem. Although there are a technology framework of administrative RBAC model, named ARBAC97, the supervise mechanism and audit mechanism on the utilization of transferred authorities is incomplete in RBAC model. In this research, an audit-integrated ARBAC (au-ARBAC) model is presented. In the au-ARBAC model, a right and liability mechanism has been set up, an audit role is defined and auditing permission is assigned to this role. At the same time, we put forwards two types basic audit business: routine audit and accident audit. As to accident audit, a decision process for division of responsibility is designed to clarify the responsibility of wrongdoer SAs. The Au-ARBAC model can help to improve the Consciousness of authorization responsibility and to perform their management authorities responsibly and legally.


2019 ◽  
Vol 8 (S1) ◽  
pp. 87-88
Author(s):  
S. Annapoorani ◽  
B. Srinivasan

This paper is concerned with the study and implementation of effective Data Emplacement Algorithm in large set of databases called Big Data and proposes a model for improving the efficiency of data processing and storage utilization for dynamic load imbalance among nodes in a heterogeneous cloud environment. With the era of explosive information and data receiving, more and more fields need to deal with massive, large scale of data. A method has been proposed with an improved Data Placement algorithm called Effective Data Emplacement Algorithm with computing capacity of each node as a predominant factor that promotes and improves the efficiency in data processing in a short duration time from large set of data. The adaptability of the proposed model can be obtained by minimizing the time with processing efficiency through the computing capacity of each node in the cluster. The proposed solution improves the performance of the heterogeneous cluster environment by effectively distributing data based on the performance oriented sampling as the experimental results made with word count applications.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 303 ◽  
Author(s):  
Sijia Hao ◽  
Rui Song ◽  
Shiwei He ◽  
Zekang Lan

Rescheduling is often needed when trains stay in segments or stations longer than specified in the timetable due to disturbances. Under crowded situations, it is more challenging to return to normal with heavy passenger flow. Considering making a trade-off between passenger loss and operating costs, we present a train regulation combined with a passenger control model by analyzing the interactive relationship between passenger behaviors and train operation. In this paper, we convert the problem into a Markov decision process and then propose the management strategy of regulating the running time and controlling the number of boarding passengers. Owing to the high dimensions of the large-scale problem, we applied the Approximate Dynamic Programming (ADP) approach, which approximates the value function with state features to improve computational efficiency. Finally, we designed three experimental scenarios to verify the effectiveness of our proposed model and approach. The results show that both the proposed model and the approach have a good performance in the cases with different passenger flows and different disturbances.


Sign in / Sign up

Export Citation Format

Share Document